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Preface

Theoretical physics is fun. Most of us indulge in it for the same reason
a painter paints or a dancer dances — the process itself is so enjoyable!
Occasionally, there are additional benefits like fame and glory and even
practical uses; but most good theoretical physicists will agree that these
are not the primary reasons why they are doing it. The fun in figuring out
the solutions to Nature’s brain teasers is a reward in itself.

The primary aim of this book is to convey this joy one feels about doing
theoretical physics and share some insights in a wide variety of topics.

I recognized the need for such a book over years of teaching different
aspects of theoretical physics to students and writing formal textbooks
in physics. Such courses and textbooks serve a very useful purpose of
training the students, but — by necessity — they cannot present the grand,
unified, view of physics. Technical expertise and depth in different areas
of physics comes with the price of sharp focus and detailed expositions
which necessarily camouflages the broader beauty of theoretical physics.
Obviously, a different kind of book — which is certainly not a textbook,
though you might learn a lot from it — is required and I hope you find my
attempt fitting the bill.

This book is a collection of 26 chapters, each devoted to highlighting
some curious, fascinating and insightful aspects of a particular topic. The
material ranges from a two-step (yes, exactly two steps; see Chapter 3)
derivation of elliptical orbits in the inverse square law force, to regular-
ization techniques in quantum field theory which prove that the sum of all
positive integers is a negative fraction (yes; see Chapter 19). While many
of the topics might appear to be standard, the descriptions are not; sev-
eral professional physicists have told me that they found the discussion
to be novel, many of the derivations new and the approach refreshingly
different. I hope you will also find something new in this book.

Most of this book will be understandable to a bright senior under-
graduate in physics who has taken basic courses in classical mechanics,
quantum mechanics, special relativity and electrodynamics. I do not as-
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VI Preface

sume previous acquaintance with quantum field theory or general rela-
tivity (though some of the chapters deal with these topics). You can dip
in anywhere you please in this book and start reading! The chapters are
reasonably modular (except for a few obvious ones which come in pairs).
You will find the highlights of each of the chapters described just after
the table of contents which will help you to decide how you want to pro-
ceed. Further, instead of subsections, I have sprinkled marginal comments
throughout the book which will alert you as to what is being talked about
in the corresponding paragraph; this makes the book even more modular
to use! You will find a list of references right at the end which could guide
you for further reading, although virtually every topic discussed here can
be pursued further by simple web-based searches. Partly for this reason, I
have kept the references rather minimal and I apologize to anyone whose
contribution might have been overlooked.

Many people have contributed, in different ways, to the making of
this book. Angela Lahee of Springer initiated this project and helped me
through its completion, displaying considerable initiative. Several of the
chapters overlap in their intellectual content with a series of articles I
wrote in the journal Resonance during 2008-2009 even though they have
all undergone significant amount of re-writing, re-grouping and inclusion
of additional material and topics. I thank the Indian Academy of Sciences
for granting permission to Springer for the reuse of the material in these
articles in this book. Many of my colleagues went through the previous
drafts of the book and offered comments. Special thanks are due to Hamsa
Padmanabhan and Aseem Paranjape for detailed comments and correc-
tions in several chapters. I thank the following colleagues (listed in al-
phabetical order) for comments on different chapters in the earlier drafts:
Jasjeet Bagla, Prasanta Bera, Pallavi Bhat, Sumanta Chakraborty, George
Ellis, Bhooshan Gadre, Peter Goldreich, Neeraj Gupta, Nissim Kanekar,
Vikram Khaire, Dawood Kothawala, Kinjalk Lochan, Malcolm Longair,
Abhilash Mishra, Dipanjan Mukherjee, Suvodip Mukherjee, Krishamo-
han Parattu, Tirthankar Roy Choudhury, Kanak Saha, Sudipta Sarkar, S.
Shankaranarayanan, Suprit Singh, T.P. Singh, Kandaswamy Subramanian,
Durgesh Tripathi.

This book would not have been possible without the dedicated support
from Vasanthi Padmanabhan, who not only did the entire LaTeXing and
formatting but also produced most of the figures. I thank her for her help.
It is a pleasure to acknowledge the library and other facilities available at
IUCAA, which were useful in this task.

Pune, Thanu Padmanabhan
September 2014
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Chapter Highlights

1. The Grand Cube of Theoretical Physics

The ‘big picture’ of theoretical physics can be nicely summarized
in terms of a unit cube made of the fundamental constants G, h̄,c−1

representing the three axes. The vertices and linkages of this cube —
which we will explore in different chapters of this book — allow you
to appreciate different phenomena and their inter-relationships. This
chapter introduces the Cube of Theoretical Physics and relates it to
the rest of the book.

2. The Emergence of Classical Physics

Quantum physics works with probability amplitudes while classical
physics assumes deterministic evolution for the dynamical variables.
For example, in non-relativistic quantum mechanics, you will solve
the Schrodinger equation in a potential to obtain the wave function
ψ(t,q), while the same problem — when solved classically — will
lead to a trajectory q(t). How does a deterministic trajectory arise
from the foggy world of quantum uncertainty? We will explore sev-
eral aspects of this correspondence in this chapter, some of which
are nontrivial. You will discover the real meaning of the Hamilton-
Jacobi equation (without the usual canonical transformations, gen-
erating functions and other mumbo-jumbo) and understand why the
Hamilton-Jacobi equation told us pa = ∂aS = (−∂tS,∇S) = (E, ppp)
even before the days of four vectors and special relativity. We will
also address the question of why the Lagrangian is equal to kinetic
energy minus potential energy (or is it, really?) and why there are only
two classical fields, electromagnetism and gravity. In fact, you will
see that classical physics makes better sense as a limit of quantum
physics!

IX
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3. Orbits of Planets are Circles!

The orbits of planets, or any other body moving under an inverse
square law force, can be understood in a simple manner using the
idea of the velocity space. Surprisingly, a particle moving in an el-
lipse, parabola or a hyperbola in real space moves in a circle in the
velocity space. This approach allows you to solve the Kepler problem
in just two steps! We will also explore the peculiar symmetry of the
Lagrangian that leads to the conservation of the Runge-Lenz vector
and the geometrical insights that it provides. Proceeding to the rela-
tivistic versions of Kepler/Coulomb problem you will discover why
the forces must be velocity dependent in a relativistic theory and de-
scribe a new feature in the special relativistic Coulomb problem, viz.
the existence of orbits spiraling to the center.

4. The Importance of being Inverse-square

This chapter continues the exploration started in the previous one.
The Coulomb problem, which corresponds to motion in a potential
that varies as r−1, has a peculiar symmetry which leads to a phe-
nomenon known as ‘accidental’ degeneracy. This feature exists both
in the classical and quantum domains and allows some interesting,
alternative ways to understand, e.g., the hydrogen atom spectrum. We
will see how one can find the energy levels of the hydrogen atom
without solving the Schrodinger equation and how to map the 3D
Coulomb problem to a 4D harmonic oscillator problem. The (1/r)
nature of the potential also introduces several peculiarities in the scat-
tering problem and we will investigate the questions: (i) How come
quantum Coulomb scattering leads exactly to the Rutherford formula?
What happened to the h̄? (ii) How come the Born approximation gives
the exact result for the Coulomb potential? What do the ‘unBorn’
terms contribute?!

5. Potential surprises in Newtonian Gravity

How unique is the distribution of matter which will produce a given
Newtonian gravitational field in a region of space? For example, can a
non-spherical distribution of matter produce a strictly inverse square
force outside the source? Can a non-planar distribution of matter pro-
duce a strictly constant gravitational force in some region? We dis-
cuss the rather surprising answers to these questions in this chapter.
It turns out that the relation between the density distribution and the
gravitational force is far from what one would have naively imagined
from the textbook examples.

6. Lagrange and his Points

A solution to the 3-body problem in gravity, due to Lagrange, has
several remarkable features. In particular, it describes a situation in
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which a particle, located at the maxima of a potential, remains stable
against small perturbations. We will learn a simple way of obtaining
this equilateral solution to the three body problem and understanding
its stability.

7. Getting the most of it!

Extremum principles play a central role in theoretical physics in many
guises. We will discuss, in this chapter, some curious features associ-
ated with a few unusual variational problems. We start with a simple
way to solve the standard brachistochrone problem and address the
question: How come the cycloid solves all the chron-ic problems?
(Or does it, really?). We then consider the brachistochrone problem
in a real, (1/r2), gravitational field and describe a new feature which
arises: viz. the existence of a forbidden zone in space not accessi-
ble to brachistochrone curves! We will also determine the shape of a
planet that exerts the maximum possible gravitational force at a point
on its surface — a shape which does not even have a name! Finally,
we take up the formation of the rainbows with special emphasis on
the question: Where do you look for the tertiary (3rd order) rainbow?

8. Surprises in Fluid Flows

The idealized flow of a fluid around a body is a classic text book
problem in fluid mechanics. Interestingly enough, it leads to some
curious twists and conceptual conundrums. In particular, it leads a
surprising divergence which needs to be regularized even in the text
book case of fluid flow past a sphere!

9. Isochronous Curiosities: Classical and Quantum

The oscillatory motion of a particle in a one dimensional potential be-
longs to a class of exactly solvable problems in classical mechanics.
This chapter examines some lesser known aspects of this problem in
classical and quantum mechanics. It turns out that both V (x) = ax2

and V (x) = ax2 + bx−2 have (1) periods of oscillation which are in-
dependent of amplitude in classical physics and (2) equally spaced
energy levels in quantum theory. We will explore several features
of this curious correspondence. We will also discuss the question of
determining the potential from the period of oscillation (in classical
physics) or from the energy levels (in quantum physics) which are
closely related and clarify several puzzling features related to this is-
sue.

10. Logarithms of Nature

Scaling arguments and dimensional analysis are powerful tools in
physics which help you to solve several interesting problems. And
when the scaling arguments fail, as in the examples discussed in this
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chapter, we are led to a more fascinating situation. A simple example
in electrostatics leads to infinities in the Poisson equation and we get
a finite EEE from an infinite φ ! I also describe the quantum energy lev-
els in the delta function potentials and show how QFT helps you to
understand QM better!

11. Curved Spacetime for pedestrians

The spacetime around a spherical body plays a key role in general
relativity and is used in the crucial tests of Einstein’s theory of gravity.
This spacetime geometry is usually obtained by solving Einstein’s
equations. I will show how this metric can be obtained by a simple
— but strange — trick. Along the way, you will also learn a three-
step proof as to why gravity must be geometry, the reason why the
Lagrangian for a particle in a Newtonian gravitational field is kinetic
energy minus potential energy and how to obtain the orbit equation in
GR, just from the principle of equivalence.

12. Black hole is a Hot Topic

A fascinating result in black hole physics is that they are not really
black! They glow as though they have a surface temperature which
arises due to purely quantum effects. I will provide a simple deriva-
tion of this hot result based on the interpretation of a plane wave by
different observers.

13. Thomas and his Precession

Thomas precession is a curious effect in special relativity which is
purely kinematical in origin. But it illustrates some important features
of the Lorentz transformation and possesses a beautiful geometric in-
terpretation. We will explore the physical reason for Thomas preces-
sion and its geometrical meaning in this chapter and in the next.

14. When Thomas met Foucault

The Foucault pendulum is an elegant device that demonstrates the
rotation of the Earth. We describe a paradox related to the Foucault
pendulum and provide a geometrical approach to determine the ro-
tation of the plane of the pendulum. By introducing a natural metric
in the velocity space we obtain an interesting geometrical relationship
between the dynamics of the Foucault pendulum and the Thomas pre-
cession discussed in the previous chapter. This approach helps us to
understand both phenomena better.

15. The One-body Problem

You might have thought that the one-body problem in physics is triv-
ial. Far from it! One can look at the free particle in an inertial or
a non-inertial frame, relativistically or non-relativistically, in flat or
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in curved spacetime, classically or quantum mechanically. All these
bring in curious correspondences in which the more exact theory pro-
vides valuable insights about the approximate description. I start with
the surprising — and not widely appreciated — result that you really
can’t get a sensible free-particle Lagrangian in non-relativistic me-
chanics while you can do it in relativistic mechanics. In a similar vein,
the solution to the Klein-Gordon equation transforms as a scalar un-
der coordinate transformations, while the solution to the Schrodinger
equation does not. These conundrums show that classical mechanics
makes more sense as a limiting case of special relativity and the non-
relativistic Schrodinger equation is simpler to understand as a limiting
case of the relativistic Klein-Gordon equation!

16. The Straight and Narrow Path of Waves

Discovering unexpected connections between completely different
phenomena is always a delight in physics. In this chapter and the next,
we will look at one such connection between two unlikely phenom-
ena: propagation of light and the path integral approach to quantum
field theory! This chapter introduces the notion of paraxial optics in
which we throw away half the solutions and still get useful results!
I also describe the role of optical systems and how the humble lens
acts as an analog device that performs Fourier transforms. In passing,
you will also learn how Faraday’s law leads to diffraction of light.

17. If Quantum Mechanics is the Paraxial Optics, then .....

The quantum mechanical amplitude for a particle to propagate from
event to event in spacetime shows some nice similarities with the cor-
responding propagator for the electromagnetic wave amplitude dis-
cussed in the previous chapter. This raises the question: If quantum
mechanics is paraxial optics, what is the exact theory you get when
you go beyond the paraxial approximation? In the path integral ap-
proach to quantum mechanics you purposely avoid summing over all
the paths while in the path integral approach for a relativistic particle
you are forced to sum over all paths. This fact, along with the parax-
ial optics analogy, provides an interesting insight into the transition
from quantum field theory to quantum mechanics and vice versa! I
also describe why combining the principles of relativity and quantum
theory demands a description in terms of fields.

18. Make it Complex to Simplify

Some of the curious effects in quantum theory and statistical mechan-
ics can be interpreted by analytically continuing the time coordinate
to purely imaginary values. We explore some of these issues in this
chapter. In quantum mechanics, this allows us to determine the prop-
erties of ground state from an approximate evaluation of path inte-
grals. In statistical mechanics this leads to an unexpected connection
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between periodicity in imaginary time and temperature. The power of
this approach can be appreciated by the fact that one can derive the
black hole temperature in just a couple of steps using this procedure.
Another application of the imaginary time method is to understand
phenomena like the Schwinger effect which describes the popping out
of particles from the vacuum. Finally, I describe a non-perturbative
result in quantum mechanics, called the over-the-barrier-reflection,
which is easier to understand using complex paths.

19. Nothing matters a lot

The vacuum state of the electromagnetic field is far from trivial.
Amongst other things, it can exert forces that are measurable in the
lab. This curious phenomenon, known as the Casimir effect, is still
not completely understood. I describe how the probability distribu-
tion for the existence of electromagnetic fields in the vacuum can be
understood, just from the knowledge of the quantum mechanics of
the harmonic oscillator. This chapter also introduces you to the tricks
of the trade in quantum field theory, which are essential to get finite
answers from divergent expressions - like to prove that the sum of all
positive integers is a negative fraction!

20. Radiation: Caterpillar becomes Butterfly

The fact that an accelerated charge will radiate energy is considered
an elementary textbook result in electromagnetism. Nevertheless, this
process of radiation (and its reaction on the charged particle) raises
several conundrums about which technical papers are written even
today. In this chapter, we will try to understand how the caterpillar
(1/r2, radial field) becomes a butterfly (1/r, transverse field) in a sim-
ple, yet completely rigorous, manner without the Lienard-Wiechert
potentials or other red-herrings. I will also discuss some misconcep-
tions about the validity of ∇ ·EEE = 4πρ for radiative fields with retar-
dation effects.

21. Photon: Wave and/or Particle

The interaction of charged particles with blackbody radiation is of
considerable practical and theoretical importance. Practically, it oc-
curs in several astrophysical scenarios. Theoretically, it illustrates
nicely the fact that one can think of the radiation either as a bunch of
photons or as electromagnetic waves and still obtain the same results.
We shall highlight some non-trivial aspects of this correspondence in
this chapter. In particular we will see how the blackbody radiation
leads a double life of being either photons or waves and how the ra-
diative transfer between charged particles and black body radiation
can be derived just from a Taylor series expansion (and a little trick)!
Finally, I will describe the role of radiation reaction force on charged
particles to understand some of these results.
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22. Angular Momentum without Rotation

Not only mechanical systems, but also electromagnetic fields carry
energy and momentum. What is not immediately apparent is that cer-
tain static electromagnetic configurations (with no rotation in sight)
can also have angular momentum. This leads to surprises when this
angular momentum is transfered to the more tangible rotational mo-
tion of charged particles coupled to the electromagnetic fields. A sim-
ple example described in this chapter illustrates, among other things,
how an observable effect arises from the unobservable vector poten-
tial and why we can be cavalier about gauge invariance in some cir-
cumstances.

23. Ubiquitous Random Walk

What is common to the spread of mosquitoes, sound waves and the
flow of money? They all can be modeled in terms of random walks!
Few processes in nature are as ubiquitous as the random walk which
combines extraordinary simplicity of concept with considerable com-
plexity in the final result. In this and the next chapter, we shall exam-
ine several features of this remarkable phenomenon. In particular, I
will describe the random walk in the velocity space for a system of
gravitating particles. The diffusion in velocity space can’t go on and
on — unlike that in real space — which leads to another interesting
effect known as dynamical friction — first derived by Landau in an
elegant manner.

24. More on Random Walks: Circuits and a Tired Drunkard

We continue our exploration of random walks in this chapter with
some more curious results. We discuss the dimension dependence of
some of the features of the random walk (e.g., why a drunken man
will eventually come home but a drunken bird may not!), describe a
curious connection between the random walk and electrical networks
(which includes some problems you can’t solve by being clever) and
finally discuss some remarkable features of the random walk with
decreasing step-length, which is still not completely understood and
leads to Cantor sets, singularities and the golden ratio — in places
where you don’t expect to see them.

25. Gravitational Instability of the Isothermal Sphere

The statistical mechanics of a system of particles interacting through
gravity leads to several counter-intuitive features. We explore one of
them, called Antonov instability, in this chapter. I describe why the
thermodynamics of gravitating systems is non-trivial and how to ob-
tain the mean-field description of such a system. This leads to a self-
gravitating distribution of mass called the isothermal sphere which
exhibits curious features both from the mathematical and physical



XVI Notations and Conventions

points of view. I provide a simple way of understanding the stability
of this system, which is of astrophysical significance.

26. Gravity bends electric field lines

Field lines of a point charge are like radially outgoing light rays from
a source. You know that the path of light is bent by gravity; do elec-
tric field lines also bend in a gravitational field? Indeed they do, and
— in the simplest context of a constant gravitational field — both
are bent in the same way. Moreover, both form arcs of circles! The
Coulomb potential in a weak gravitational field can be expressed in
a form which has unexpected elegance. The analysis leads to a fresh
insight about electromagnetic radiation as arising from the weight of
electrostatic energy in the rest frame of the charged particle, and also
allows you to obtain Dirac’s formula for the radiation reaction, in
three simple steps.

Notations and Conventions

Most of the notations used in the book are fairly standard. You may want
to take note of the following:

1. I use the Gaussian system of units to describe electromagnetic phe-
nomena; however, conversion to SI units is completely straightforward
in all the relevant chapters.

2. In chapters involving relativity, the Latin letters a,b, ... range over the
spacetime indices 0,1,2,3, while the Greek indices α ,β , ... range over
the spatial coordinates 1,2,3 with the notation ∂i = (∂/∂xi) for co-
ordinate derivatives. When the discussion does not involve relativistic
physics, this distiction between Latin and Greek subscripts is not main-
tained. The signature for the spacetime is (−,+,+,+) with ηi j = dia
(−1,1,1,1) = η i j. Units with c = 1 are used most of the time though
c is re-introduced when required.

3. All through the book (and not only in chapters dealing with relativity)
I use the summation convention according to which any index repeated
in an algebraic expression is summed over its range of values.

4. In topics dealing with quantum mechanics, I often use units with h̄= 1,
re-introducing it into the equations only when relevant.

5. In the equations, you will sometimes find the use of the symbol ≡. This
indicates that the equation defines a new variable or notation.



The landscape of
Theoretical Physics

Newtonian gravity +
Classical Mechanics

1The Grand Cube of
Theoretical Physics

The key purpose of this book is to let you enjoy theoretical physics, ap-
preciate the beautiful overall structure and see how everything hangs to-
gether. To do this, it is helpful to have a map which will allow you to
navigate the landscape of theoretical physics. The Cube of Theoretical
Physics (CTP) — which I will now introduce — is a good way to begin.

The fundamental principles of physics emphasize the role of three con-
stants: G (Newton’s gravitational constant), c (the speed of light) and h̄
(the Planck constant). By a suitable choice of units, we can set the nu-
merical value of each of these three to unity and the broad structure of
physical theories can be described using a 3-dimensional space in which
each of the Cartesian coordinates (see Fig. 1.1) is taken to be one of the
above mentioned fundamental constants. (I have used this diagram during
my lectures in the mid-eighties. A somewhat similar diagram with a tetra-
hedron rather than a cube appears in Ref. [1]. It is very likely that many
others have thought of such a description but the only published reference
I know is Ref. [2] of which I am a co-author.) It is convenient to use (1/c)
rather than c in such a description. The entire space of physical theories
will be confined within the unit cube so formed.

An examination of this diagram reveals several interesting features.
The origin G = 0, h̄ = 0, c−1 = 0 represents an idealized non-relativistic
(point) mechanics (NRM) with which your physics course begins. Starting
from this and traveling along different directions on the CTP, we can have
a glimpse of what nature has in store.

Moving along the G−axis will lead to non-relativistic, classical, New-
tonian gravity (NG) which is probably the least disturbing journey one
can undertake on the CTP. In fact, your classical mechanics course starting
at the origin will certainly include topics like the Kepler problem which
uses Newtonian gravity. So the vertical axis between NRM and NG in
Fig. 1.1 is usually treated together in your first semester course. To be
honest, this completely hides the true nature of gravity but then, as we
will see repeatedly, physicists love useful approximations.

1© Springer International Publishing Switzerland 2015 
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Fig. 1.1: The landscape of theoretical physics can be concisely described by a cube —
The Cube of Theoretical Physics — whose axes represents the three fundamental con-
stants G, h̄ and c−1. The vertices and linkages describe different structural properties
of the physical theories. See text for detailed description.

Space + Time =
Spacetime

Real world is
quantum!

Gravity is just
spacetime geometry!

Moving along the speed of light axis to c−1 = 1, (keeping G= 0, h̄= 0),
will get you to special relativistic (SR) mechanics. Instead of space and
time being treated as separate entities, we now view them as parts of a
spacetime continuum. Time is no longer absolute and two clocks moving
with respect to each other run at different rates.

Traveling along the h̄−axis will lead to non-relativistic quantum me-
chanics (QM) and, as they say, if you are not shocked on the first exposure
to quantum mechanics, you haven’t grasped it! It turns the deterministic
classical world on its head and introduces probabilistic concepts, wave-
functions, wave-particle duality and all the rest. You slowly get used to
it.

These three vertices provide more accurate descriptions of nature than
the region near the origin but it gets better if we keep a pair of constants
to be non-zero. The vertex c−1 = 1, G = 1, h̄ = 0 represents classical
general relativity (GR) which combines the principles of special relativity
and gravity. This takes you from flat spacetime to curved spacetime and
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tells you that gravity is actually a manifestation of curved geometry. In
SR, you learnt that clocks in relative motion will run at different rates with
respect to each other; now you learn that even clocks at rest with respect
to each other can run at different rates, if they are located at different
gravitational potentials. Gravity affects the flow of time!

Similarly, h̄ = 1, c−1 = 1, G = 0 leads to flat spacetime quantum field
theory (QFT), which combines the principles of special relativity and
quantum theory. Particles lose their eternal existence and can now pop
in and out of the vacuum. Further, it is mandatory that every particle must
have an antiparticle and that interactions are mediated by the exchange of
special kinds of particles. In fact, you need a totally new kind of language
to understand these high energy phenomena.

The vertex at which all the three constants are unity, c−1 = 1, G = 1,
h̄ = 1, should represent the domain of quantum gravity but — more im-
portantly for our purpose — it also represents the study of quantum field
theory in curved space-time (QFT in CST), like, for example, the study of
radiation from black holes. A description of the thermal features of black
holes (Chapter 12) requires all these three constants to be non-zero. While
quantum gravity still remains a distant dream, we do have a fair amount
of understanding of quantum field theory in curved spacetime and, in this
sense, this vertex (QFT in CST) can be considered to be within our grasp.

While most of the above limiting forms of physical theories have
attracted a reasonable amount of attention and made it into textbooks,
the Fig. 1.1 brings out one limiting case which probably has not been
explored in comparable detail [2]. This is the “ignored” vertex with
c−1 = 0, G = 1, h̄ = 1, which corresponds to exploring the nature of
gravity in a quantum mechanical context (GQM). Some of the discussion
in a later chapter, Chapter 15, will be devoted to the exploration of this
vertex. More generally, we will deal with the issue of projecting theories
to the Gh̄ plane by taking the c → ∞ limit in different contexts.

The chapters of this book will take you through a tour of the CTP.
There are a few chapters which will linger on a particular vertex just to
explore some curious features there. And then there are other chapters
which tell you what happens on the links when the effects of two vertices
are incorporated or describe the curious limiting behaviour as we go from
different vertices towards the origin.

As you can easily imagine most of the topics require inputs from more
than one vertex and hence sit on the linkages. For example, Chapter 3
(where you learn that planets actually move in circular orbits) provides a
two-step solution to Kepler problem and demystifies several aspects of it.
This clearly sits on the link between NRM and NG. The closely related
Chapter 4, involving NRM and QM, studies quantum mechanical aspects
of the Kepler/Coulomb problem and shows you that the hydrogen atom is
essentially a harmonic oscillator in disguise. Chapter 5 (where you learn
that planets of weird, non-spherical shape, can exert a strictly 1/r2 force
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outside — a result which many physicists feel is impossible) and Chap-
ter 6 (which tells you how motion can be perfectly stable around maxima
of the potential and how Nature exploits this result) use both NRM and
NG and belong to that link. Chapter 25 also investigates the NG-NRM
link in the context of thermodynamics of gravitating systems, which is
nothing like the thermodynamics of the usual gaseous systems you would
have learnt in standard courses.

Chapter 9 studies a special class of potentials in which the classical pe-
riod of oscillation is independent of the amplitude and explores its quan-
tum analogues drawing from both QM and NRM. Chapters 10 and 17
possibly belong to the QM-QFT link. Chapter 10 illustrates the ideas of
the renormalization group in an elementary example from quantum me-
chanics. Chapter 17 describes the relation between quantum mechanics
and optics and shows how one can understand the transition from QM to
QFT exploiting a simple optics analogy.

There are two chapters dealing with the manner in which approximate
descriptions emerge from more exact descriptions. Chapter 2 tells you
how trajectories of particles arise in Newtonian, special relativistic, and
even general relativistic physics from corresponding quantum descrip-
tions. This belongs to at least three links, GQM-QM-NRM, QFT-SR-
NRM and QFT in CST-GR-NG. Chapter 15 explains why you need spe-
cial relativity if you have to understand non-relativistic mechanics prop-
erly!

Other chapters can be mostly confined to a single vertex of CTP.
Chapter 7 (which is a potpourri of extremum problems including the
brachistochrone in an inverse square force field, the strange shape of a
planet that can exert the maximum possible force at a point on its surface,
and why it is so hard to see the tertiary rainbow), Chapter 8 (which tells
you how strange conundrums can arise in the simplest of the fluid flows),
Chapter 23 (introducing the concepts of dynamical friction and velocity
relaxation in stellar systems) and Chapter 24 (where you explore unex-
pected features of random walks like their relation to electric circuits and
how a drunkard who is getting progressively tired can lead you to a Cantor
set) are probably closest to your standard classical mechanics course, and
they live at the NRM vertex.

There are several chapters which deal with the SR vertex. Chapter 13
describes a phenomenon called Thomas precession which is counterintu-
itive but has a lovely geometrical interpretation. Surprisingly, the mathe-
matics is essentially the same as that of the Foucault pendulum — a con-
nection which you might not have suspected a priori. This is described
in Chapter 14 which probably falls somewhere along the SR-GR link.
While we are not using curved spacetime, some notions of curved geom-
etry (in the velocity space!) find application here. I will put Chapter 22
(which describes a perfectly static electromagnetic field filled to the brim
with angular momentum), Chapter 20 (where we learn how to get the ex-
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act electromagnetic fields of an arbitrarily moving charged particle with-
out differentiating the Lienard-Wiechert or anybody else’s potential), and
Chapter 16 (which describes optics in a manner that will be useful later
on to explore the connection between quantum mechanics and quantum
field theory) also at the SR vertex. This is because anything electromag-
netic properly belongs to the domain of special relativity. (There are, alas,
textbooks which will begin to teach you electrodynamics without special
relativity and bring it in after a dozen chapters; if you learnt electrody-
namics from one of them, may be you need a remedial course!)

I have included two chapters dealing with the GR vertex, viz., Chap-
ters 11 and 26. Chapter 11 shows you how to get the curved spacetime
around a spherical body by a cute trick — which works for reasons nobody
really understands. Chapter 26 discusses how gravity bends the electric
field lines of a charged particle and shows you that, in the simplest con-
text, this bending of electric field lines is exactly the same as the bending
of light rays by gravity!

Two Chapters (18 and 19) are explorations in quantum field the-
ory. One deals with the fascinating manifestation of vacuum fluctuations
known as the Casimir effect, which describes the force of attraction be-
tween two conducting plates kept in the vacuum; along the way, you learn
that the sum of all positive integers is actually a negative fraction, viz.
(−1/12) (incredible, but true!). The other deals with the production of
particles from the vacuum and shows how it can be thought of as due to
complex trajectories of virtual particles. Chapter 21 explores the interac-
tion of charged particles with radiation when the latter is treated either
as fluctuating electromagnetic fields or as a bunch of photons, and eluci-
dates the wave-particle duality as applied to the photon in a very practical
context.

The exploration of black hole thermodynamics (Chapter 12), possibly
the only concrete result we have in combining the principles of gravity
and quantum mechanics, belongs to the diagonally opposite vertex to the
origin (viz. QFT in CST). I provide an accessible, simple, yet rigorous,
derivation this result.

The tour around CTP also highlights the following amusing fact: It
is incredible how generations of theoretical physicists are trained, start-
ing from a model of the world which is known to be completely wrong!
Semester after semester you correct and relearn the wrong things you
have learnt before. After a course in classical mechanics, you will be told
that there is something called special relativity and the Newton’s laws are
wrong. You will then learn that when gravity is included, special relativity
is no good and you need to redo everything in curved spacetime to include
gravitational physics, because Newton got not only his equations of mo-
tion wrong but also his law of gravitation. While you are grappling with
all these some other professor would have told you that even the entire
fabric of physics you have been taught in previous semesters is incorrect
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and that the world is (something loosely described as) quantum mechani-
cal. There is no deterministic evolution and everything has to be done in a
probabilistic manner. You learn that all the physics you have learnt (except
thermodynamics, but we will not get into that) needs to be quantized —
which might take up couple of more semesters. If you still persist with
physics, you will learn how to put together special relativity and quan-
tum mechanics in the form of quantum field theory and maybe even learn
how to do field theory in a curved background, thereby bringing together
gravity and quantum mechanics in a rough sort of way. Clearly, education
in advanced physics is a progressive attempt to correct the wrong things
taught to you earlier!

Some physicists will protest and say, “Well, you see, it is not really
wrong physics we teach; it is all valid in some approximate sense. Any-
way, a student cannot understand advanced concepts all at one go. It has
to be given in small doses, one step at a time”. There is lot of practical
truth in this claim but one cannot but notice that no mathematician is ever
taught anything wrong (or approximate) — but we physicists learn to live
with approximations and idealizations which get corrected progressively.
This is the price we pay to be able to relate to real Nature out there (which
pure mathematics is not overly concerned with!). Hopefully this book will
also help you to appreciate the broader structure of theoretical physics and
how approximations are embedded in more exact descriptions.
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2The Emergence of
Classical Physics

Quantum physics is nothing like classical physics and it is probably not an
exaggeration to say that we just get used to quantum physics — without
really understanding it — as we learn more about it! There are several
conceptual and technical problems involved in taking the classical limit
of a quantum mechanical description. We will not worry too much about
the conceptual issues — interesting though they are — but will instead
concentrate on one technical issue in this chapter.

The central quantity in quantum physics is the probability amplitude
for something to happen, described by a complex number Ψ . In the sim-
plest case of non-relativistic quantum mechanics, this could be the wave-
function ψ(t,q) for a particle such that |ψ(t,q)|2 gives the probability to
find this particle at a position q at time t. The same kind of idea works even
in more general contexts. For example, one can study the quantum ver-
sion of electrodynamics in terms of a similar amplitude Ψ(EEE(xxx), t) such
that |Ψ(EEE(xxx), t)|2 gives the probability that an electric field EEE(xxx) exists in
space at time t. (We will say more about this in Chapter 19.) In all these
cases, the amplitude satisfies a linear equation allowing the superposition
of solutions of the equation. In the case of non-relativistic quantum me-
chanics, this is just the Schrödinger equation; in more complex cases the
equation can be more complicated but is always linear in the amplitude.

Classically, on the other hand, we describe the same system by a de-
terministic evolution. In non-relativistic mechanics, our aim is to find the
trajectory q(t) of a particle, by solving, say, Newton’s law of motion; in
classical electrodynamics, we determine the evolution of the electric field
at all times by finding EEE(t,xxx) as a solution to Maxwell’s equations. No
probabilities, no probability amplitudes! How do we get here from there?

The answer is fascinating and, in fact, validates several techniques used
in classical physics that appear contrived or mysterious within the classi-
cal context. Let me first explain qualitatively how this comes about.
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The key idea is to write the quantum amplitude — which is a complex
number — in the form:

Ψ = Rexp
(

iS
h̄

)
, (2.1)

which is just the standard representation of a complex number in terms
of an amplitude and a phase — with the crucial new input being the way
we have introduced h̄ (we will say more about it soon). This way of rep-
resenting the quantum amplitude gives us a clue as to how the classical
physics might arise. If we substitute this expression into the equation
satisfied by the amplitude (which is just the Schrödinger equation in the
case of non-relativistic quantum mechanics, or a more complicated one
in other contexts) and equate the real and imaginary parts, we will obtain
two equations for R and S — which, of course, are completely equivalent
to the original equation satisfied by the amplitudeΨ . We now assume that
the phase S is analytic in h̄ and has a Taylor series expansion:

S = S0 + h̄S1 + h̄2S2 + ....... (2.2)

which means that, at the lowest order, the phase ofΨ in Eq. (2.1) is given
by (S0/h̄) and is non-analytic in h̄.

Incredibly enough, we can solve the relevant equation (which is the
Schrödinger equation in non-relativistic quantum mechanics) consistently,
order by order in h̄ and — in particular — determine S0, which is inde-
pendent of h̄. The fact that S0 satisfies an equation that is independent of
h̄ not only in non-relativistic quantum mechanics but in all physical theo-
ries known to us is quite non-trivial. It tells you something deep about the
laws of nature.

When we solve these equations, we will introduce some additional
constants (analogous to integration constants) in the solution. Let us de-
note one such constant by λ and the corresponding lowest order phase
by (Sλ/h̄), which depends on λ . (We have dropped the subscript 0 in S0
for notational simplicity and written S0(λ ) = Sλ .) Then the probability
amplitude will depend on λ and one could write Ψλ = Rexp(iSλ/h̄) for
the particular solution correct to the lowest order. (Strictly speaking, we
should use the notation Rλ rather than R, but it will turn out that R plays
only a minor role in what follows; so we will not bother about it.) But
since the original equation satisfied by Ψ is linear in Ψ , one can super-
pose solutions with different λ to find a general solution. When we add
the solutions with different λ , we are adding waves with different phases
(Sλ/h̄). (Again, strictly speaking, the amplitudes Rλ are also dependent
on λ but this dependence is irrelevant for the interference condition at the
leading order.) In the limit of h̄ → 0, the phases will oscillate rapidly and
waves with different values of λ will cancel each other out in general. We
will get a non-zero result only if the phase does not change significantly
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for small changes in λ . This condition for stationary phase translates to
(∂S/∂λ ) = 0 which selects out a classical evolutionary history! In non-
relativistic quantum mechanics, for example, S = S(t,q,λ ) and the con-
dition ∂S/∂λ = 0 will lead to a trajectory q = q(t,λ ). Thus, the classical
trajectories arise from the condition for the stationarity of the phase of the
quantum wavefunction. All we need to check, of course, is that this does
give the expected classical trajectory.

As I said before, everything we know in classical physics arises from
the corresponding quantum description by the above mechanism. We will
first try this out in the context of non-relativistic quantum mechanics and
explore some nuances, before describing more general cases.

In the context of a non-relativistic particle influenced by a poten-
tial V (q), the amplitude ψ(t,q) satisfies the time-dependent Schrödinger
equation

ih̄ψ̇ =− h̄2

2m
∂ 2ψ
∂q2 +V (q)ψ , (2.3)

where overdot denotes derivative with respect to time. You also know that,
classically, the same particle is described by a Hamiltonian H(p,q), and
an equation of motion:

H(p,q) =
p2

2m
+V (q); mq̈ =−V ′(q) . (2.4)

In fact, you learn the wrong theory (classical physics) first and then ‘quan-
tize’ it to get a better description — in this case, through the Schrödinger
equation in Eq. (2.3) obtained from H(p,q). But let us forget this histor-
ical fact and assume that you are just given the more accurate theory, in
the form of Eq. (2.3). You know that the classical behaviour — trajecto-
ries and all — has to emerge from this equation in the limit of h̄ → 0. How
do we go about taking this limit?

It is worth thinking about this issue a little bit more before jumping
onto the description I outlined above, in terms of Eq. (2.1) and Eq. (2.2).
The Schrödinger equation in Eq. (2.3) is just a differential equation with h̄
appearing as a parameter. You might have thought that one would expand
ψ in a Taylor series in h̄ like,

ψ = ψ0 + h̄ψ1 + h̄2ψ2 + · · · , (2.5)

plug it into the equation and try to solve it order by order in h̄. The
ψ0,ψ1... will all have weird dimensions since h̄ is not dimensionless; this,
however, is not a serious issue. The key point is that, in such an expansion,
we are assuming ψ to be analytic in h̄. This Taylor series expansion, how-
ever, does not work, as you can easily verify. In fact, we would have been
in a bit of trouble if it had worked since we would then have to interpret
ψ0 as some kind of “classical” wavefunction. The way one obtains the
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classical limit is quite different. We will get it from the ansatz in Eq. (2.1)
which has h̄ occurring non-analytically in the phase.

Let us now carry out the procedure described earlier. Using the expres-
sion for ψ from Eq. (2.1) in Eq. (2.3), and equating the real and imaginary
parts, we get the two equations

(R2S′)′ =−m
∂R2

∂ t
(2.6)

and
S′2

2m
+V (q)+

∂S
∂ t

=
h̄2

2m
R′′

R
, (2.7)

where the prime denotes the derivative with respect to q. The Schrödinger
equation is completely equivalent to the two real equations in Eq. (2.6) and
Eq. (2.7). Anything you can do with a complex wavefunction ψ can also
be done with two real functions R and S. But, of course, the Schrödinger
equation is linear in ψ while equations Eq. (2.6) and Eq. (2.7) are non-
linear, thereby hiding the principle of superposition of quantum states —
which is a cornerstone of the quantum description.

Equation (2.7) suggests an alternate scheme for doing the Taylor se-
ries expansion in h̄. We can now try to interpret the left hand side of
Eq. (2.7) as the lowest order contribution to the phase of the wavefunction
in Eq. (2.1). In such a case, we can attempt a Taylor series expansion in
the form

S(t,q) = S0(t,q)+ h̄2S1(t,q)+ · · · . (2.8)

This means the leading behaviour of the wavefunction is given by exp(iS0/h̄)
which is non-analytic in h̄. This is a different kettle of fish when it comes
to a series expansion in terms of a parameter in a differential equation.
Also, note that Eq. (2.7) depends only on h̄2 and not on h̄; so the second
term in the Taylor series starts with h̄2, and not with h̄.

Why does this approach work while the expansion in Eq. (2.5) does
not lead to sensible results? The reason essentially has to do with the fact
that — in proceeding from quantum physics to classical physics — we are
doing something analogous to obtaining ray optics from electromagnetic
waves. One knows that this can come about only when the phase of the
wave is non-analytic in the expansion parameter — which is essentially
the wavelength in the case of light propagation. So you need to bring in
some extra physical insight to obtain the correct limit.

While ψ is non-analytic in h̄, we have now translated the problem into
R and S which are (assumed to be) analytic in h̄ so that the standard pro-
cedure works. To the leading order, we will ignore the right hand side of
Eq. (2.7) and obtain the equation

S′20
2m

+V (q)+
∂S0

∂ t
= 0 . (2.9)
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(This result might seem obvious but there is a subtlety lurking here which
we will comment on later.) This partial differential equation determines
the phase of the wavefunction to the lowest order of accuracy in h̄. Solving
it is pretty easy; you try an ansatz S0(t,q) = −(t − t0)E +F(q) where E
and t0 are two constants. An elementary integration gives the solution as

SE(t,q) =−(t − t0)E +
∫

dq
√

2m(E −V (q)) , (2.10)

which depends on E as a parameter, indicated explicitly by a subscript in
SE . (I have dropped the subscript “0” for simplicity.) Strictly speaking,
the square root in Eq. (2.10) comes with a ± factor in front; we have
chosen one of the branches using an initial condition on the direction of
the velocity. Correspondingly, the wavefunction is given by

ψE(t,q)� Rexp
1
h̄

[
−iE(t − t0)+ i

∫
dq
√

2m(E −V (q))
]
, (2.11)

which again depends on E as a parameter. So far, we have merely written
down the Schrödinger equation, Eq. (2.3), and solved it in a particular
approximation. Where is classical physics and where are the trajectories?

To obtain the classical trajectory out of this quantum wavefunction,
we use the idea of constructive interference of waves. Since E is just a
parameter and the Schrödinger equation in Eq. (2.3) is linear in ψ , we
can superpose solutions with different values of E to construct a wave
packet. When we add ψE with different values of E, the condition for
constructive interference corresponds to the phase of the wavefunction
remaining stationary when E changes by a small amount ΔE. That is, we
impose the condition

SE(t,q) = SE+ΔE(t,q) . (2.12)

This is equivalent to the condition (∂SE/∂E) = 0. For SE in Eq. (2.10),
this leads to

t − t0 =
∫

dq
(

m
2(E −V )

)1/2

, (2.13)

which gives you the sought-after trajectory q(t) as a function of the pa-
rameter E. (You need to fix the two parameters E and t0 by the boundary
conditions of the problem.) The phase of the wavefunction singles out this
trajectory in the t − q plane by the condition of constructive interference
in Eq. (2.12). The explicit emergence of the classical trajectory is shown
graphically in Fig. 2.1 for the simple potential V (x) = mgx.

It is elementary to show from Eq. (2.13) that the trajectory satisfies
the equations Eq. (2.4) with H(p,q) = E. The second of these equations
(viz. Newton’s second law) is not the most efficient way to solve for the
trajectory of the particle. Almost always, solving Eq. (2.9) and demanding
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Fig. 2.1: The emergence of a classical trajectory from the constructive interference of
quantum phases. As an illustration, we consider curves of constant phase SE(t,x) in
the t − x plane for the energies E and E +ΔE. The function SE(t,x) is evaluated using
Eq. (2.10) for the potential V =mgx. The set of unbroken curves are given by SE(t,x) =
constant, while the dashed curves are for SE+ΔE(t,x) = constant. The condition of
constructive interference requires S to remain unchanged when E → E + ΔE. This
condition SE(t,x) = SE+ΔE(t,x) determines a set of points on the t − x plane shown in
the figure which passes through the intersection points of the two families of curves.
This is the classical trajectory given by x = (1/2)gt2 with suitable initial conditions.

(∂S/∂E) = 0 is a faster route to the trajectory. Quantum physics gives the
most efficient route to the classical trajectory!

Let us pause and savour what we have achieved. We started with the
Schrödinger equation for a particle in a potential V and determined the
phase of the wavefunction to the lowest order of accuracy in h̄. This phase
satisfied a partial differential equation, Eq. (2.9). The solution to this par-
tial differential equation introduced the parameter E into the problem so
that the phase of the wavefunction depended on this parameter E. We then
looked for the region in the t −q plane in which constructive interference
of the waves, with different values of E occurs. This is equivalent to de-
manding (∂S/∂E) = 0 and it singled out the trajectory followed by the
particle in the t −q plane.

If we want to forget about quantum mechanics and only want to know
the classical trajectory of a particle in a potential V , then we can express
the whole procedure in an algorithmic fashion:
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1. Define a Hamiltonian H(p,q). In our case, it was H(p,q) = (p2/2m)+
V (q) but it could have been more general.

2. Write down the partial differential equation for a function S(t,q) given
by

∂S
∂ t

+H
[
∂S
∂q

,q
]
= 0 (2.14)

which arises as the lowest order approximation to the equation satisfied
by the wavefunction. Solve this partial differential equation, which will
introduce the constants E and t0 leading to the solution S(t,q;E, t0).
This function is called the action purely because of historical reasons.

3. Impose the condition (∂S/∂E) = 0. This will give you the classical
trajectory taken by the particle in terms of the two arbitrary constants E
and t0. Fix the constants using the boundary conditions of the problem.

You might recognize Eq. (2.14) as the Hamilton-Jacobi equation from a
classical mechanics course. It most probably was introduced after a lot of
talk about the so-called canonical transformations, generating functions
and what not. The condition (∂S/∂E) = 0 would have come as a con-
dition on new coordinates and momenta in a canonical transformation.
Forget it all! Particles do not follow trajectories. They are described by
wavefunctions but under appropriate circumstances the constructive inter-
ference of the phases of the wavefunction will single out a path which
we call a classical trajectory. The Hamilton-Jacobi equation is just the
lowest-order Schrödinger equation if we use the ansatz in Eq. (2.1). The
mysterious procedure in Hamilton-Jacobi theory — of differentiating the
solution to Hamilton-Jacobi equation and equating it to a constant — is
just the condition for constructive interference of the phases of waves
differing slightly in the parameter E. The procedure based on Hamilton-
Jacobi theory works in classical mechanics because it is supported by the
Schrödinger equation.

Box 2.1: The Hamilton-Jacobi equation is a dispersion relation!

The Hamilton-Jacobi equation is essentially a dispersion relation for
a complex wave. This is easy to see in the context of non-relativistic
quantum mechanics. If a quantum amplitude is expressed in the
form ψ = Rexp(iS/h̄), then the Hamilton-Jacobi equation relates
p = ∂S/∂q to E = −∂S/∂ t by the condition p2(q) = 2m(E −V ).
This is a relation between the wave vector k = p/h̄ and the frequency
ω = E/h̄ of the “matter wave” associated with the particle.

In fact, this idea generalizes to the relativistic case as well. In this
case, the Schrödinger equation will be replaced by a more compli-
cated equation, say, the Klein-Gordon equation, which might also in-
clude interaction terms with electromagnetic or gravitational fields.
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Though the probabilistic interpretation will no longer hold for the so-
lutions in general, it can be made to work in the appropriate limit and
the classical trajectory can still be obtained by the same prescription
as in non-relativistic quantum mechanics.Relativity before

relativity: H =−∂t S
and ppp = ∇S is
just pa = ∂aS

We again express the so-
lutions to the relevant wave equation in the form Ψ = Rexp(iS/h̄)
and define the four-momentum of the particle as pa = ∂aS, which
nicely incorporates the results (∂S/∂ t) = −E, ∇S = ppp at one go.
The Hamilton-Jacobi equation can be now obtained from the known
relation between the energy and momentum.

For example, a free relativistic particle has η i j pi p j = −m2c2

which is just a fancy way of writing the relation between energy and
momentum: E2 = |ppp|2c2 + m2c4. The Hamilton-Jacobi equation is
obtained by replacing p j by ∂ jS to give: η jk∂ jS∂kS =−m2c2.

A more non-trivial case is a charged particle in an electromag-
netic field described by a vector potential Ai.Same story for a

particle in an
electromagnetic
field ...

In this case, the
four-momentum changes as: p j → (p j − qA j). The corresponding
Hamilton-Jacobi equation is:

η jk(∂ jS−qA j)(∂kS−qAk) =−m2c2 . (2.15)

If you solve this equation in a given electromagnetic potential Ak and
impose the condition for constructive interference, you will get the
trajectory of the charged particle in this field. (We will see an example
in Chapter 3.)

The situation with the gravitational field is even simpler. Grav-
ity is described by changing the special relativistic line interval
ds2 = ηi jdxidx j to the form ds2 = gi jdxidx j, where gi j is the metric
tensor which describes the curved spacetime and gravity. (You will
learn why, in Chapter 11.) The dispersion relation for momentum
now changes from ηab pa pb = −m2c2 to gab pa pb = −m2c2. Substi-
tuting pa = ∂aS then gives you the Hamilton-Jacobi equation in the
presence of gravity.... and for a

particle in a
gravitational field. gab ∂aS ∂bS =−m2c2 . (2.16)

The rest of the algorithm to get the trajectory is the same as before.
The equations, (2.15), (2.16) etc. describe the dispersion relations for
waves associated with material particles interacting with electromag-
netic or gravitational fields in the h̄ → 0 limit.

As I explained at the beginning of this chapter, the ideas developed
here are extremely general and — in fact — we do not know of any
physical system which is not encompassed by these principles.
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Quantum states
without classical
limit

Example 1:
Tunneling

Example 2:
Ground states

This looks good, but haven’t we overstepped our limits? Surely there
must exist quantum states described by some ψ which do not lead to clas-
sical trajectories ? What happened to them? Sure there are; to see where
they fit in, let us study couple of examples.

To begin with, note that, though we developed the above approach
from a desire to obtain the classical limit, mathematically speaking, we
are just studying an approximation to the differential equations govern-
ing the system — usually known as Wentzel-Kramers-Brillouin (WKB)
approximation. This fact is strikingly evident in the context of quantum
mechanical tunneling which, of course, has no classical analogue. Nev-
ertheless, we can get a reasonable approximation to the wavefunction in a
classically forbidden form by taking E <V (q) in Eq. (2.9). In this range,
say, a < q < b where E <V (q), we see that S0 picks up the imaginary part
given by

S0 =
√

2m
∫ b

a

√
E −V (q) dq = i

√
2m

∫ b

a

√
V (q)−E dq . (2.17)

The wavefunction now becomes exponentially decreasing (or increasing)
in this classically forbidden range. Without the oscillatory behaviour, so
there is no constructive interference of waves and no classical trajectories!

The second context is related to the subtlety which I mentioned earlier
in ignoring the right hand side of Eq. (2.7). For this approximation to be
valid, we must have

lim
h̄→0

h̄2

2m
R′′

R
= 0 . (2.18)

It is easy to construct states for which this condition is violated! As a sim-
ple example consider the ground state of a system in a bounded potential
which will be described by a real wavefunction. In this case, ψ = R and
S = 0. From Eq. (2.7) we now see that

h̄2

2m
R′′

R
=V (q)−E . (2.19)

The limit in Eq. (2.18) cannot now hold, in general. Clearly our analysis
fails for the ground state of a quantum system when we try the ansatz in
Eq. (2.1). To see this explicitly, consider the ground state of a harmonic
oscillator:

ψ(q) = N exp
[
−mω

2h̄
q2
]
. (2.20)

This wavefunction is an exact solution to the Schrödinger equation, and
its amplitude and phase (which is zero) must thus satisfy Eq. (2.6) and
Eq. (2.7). A straightforward computation now shows — not surpris-
ingly — that

h̄2

2m
R′′

R
=

1
2

mω2q2 − 1
2

h̄ω . (2.21)
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When we take the limit h̄ → 0, the second term on the right hand side
vanishes but not the first term! This means that there are quantum states
for which we cannot naively take the right hand side of Eq. (2.7) to be
zero and determine the classical limit. (Interestingly enough, this is also
true for the time-dependent, coherent, states of the oscillator. You may
want to amuse yourself by analyzing this situation in greater detail.) The
h̄ → 0 limit of the Schrdinger equation is far from trivial.

Box 2.2: The Wigner function

Can we interpret the wavefunction itself in the classical limit rather
than obtain a trajectory by constructive interference and use it to de-
scribe classical limit? This is tricky and the best we can do is to
use the concept of the Wigner function F(q, p, t), corresponding to
a wavefunction ψ(q, t), defined by the relation

F(q, p, t) =
∫ ∞

−∞
duψ∗

(
q− 1

2
h̄u, t

)
e−ipuψ

(
q+

1
2

h̄u, t
)

. (2.22)

The idea is to see whether one can think of F as a probability distri-
bution function in the phase space (with position (q) and momentum
(p) as coordinates) since F simultaneously encodes both coordinate
space and momentum space information in a state represented by ψ .
(Some of the pedagogical details regarding Wigner functions can be
found. e.g., in Ref. [3].) If you integrate F over the momentum vari-
able p, you get ∫ ∞

−∞
d p F(q, p, t) = |ψ(q, t)|2 , (2.23)

while if you integrate F over q you get∫ ∞

−∞
dq F(q, p, t) = |φ(p, t)|2 , (2.24)

where φ(p, t) is the Fourier transform of ψ(q, t). From the standard
rules of quantum mechanics, we know that φ(p, t) gives the probabil-
ity distribution in the momentum space. Therefore, when marginal-So far, so good!

ized over either coordinate, F satisfies the nice properties that we
expect of a probability distribution. Further, direct differentiation of
Eq. (2.22) and some clever manipulation will allow you to obtain the
following equation satisfied by F :

∂F
∂ t

+
p
m
∂F
∂q

− dV
dq

dF
∂ p

=
h̄2

24
d3V
dq3

∂ 3F
∂ p3 + · · · , (2.25)
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where · · · denotes terms which are of higher order in h̄. So if the po-
tential is at most quadratic in the coordinates, or for arbitrary poten-
tials up to linear order in h̄, the right hand side of Eq. (2.25) vanishes
and we get exactly the continuity equation in phase space with the
semi-classical identifications q̇ = p/m and ṗ =−V ′.

The only trouble — and a serious one — is that F is not positive-
definite and since we do not know how to interpret negative probabil-
ities, we cannot use F as a probability distribution in the phase space. The fly in the

ointmentFor example, the Wigner function corresponding to the first excited
state of a harmonic oscillator (in suitable units) is

F(q, p) = 4(q2 + p2 − (1/2))e−(p2+q2) , (2.26)

which can go negative.
This does not, however, prevent us from using the Wigner func-

tion in suitable limits as an approximation to the classical probability
distribution. In particular, the Wigner function corresponding to the
semi-classical wavefunction is quite easy to interpret. In this case, we Works for the

semiclassical statesget
F(q, p) ∝

1
|S′0(q)|

δD

(
p− ∂S0

∂q

)
+O(h̄2) . (2.27)

The Dirac delta function δD tells you that when the particle is at q,
its momentum is sharply peaked at (∂S0/∂q) which is exactly what
we would have expected if the particle was moving along a classi-
cal trajectory. Further, the probability to find the particle around q
is proportional to (1/S′(q)) which is in turn proportional to the time
dt = dq/v(q) (where v(q) is the speed of the particle) which the par-
ticle spends in the interval (q,q+dq). Note that now the probability
distribution is not peaked around any single trajectory q(t); however,
once you pick a q, it gives you a unique p. This correlation between
momentum and position is the key feature of the classical limit.

If you take a classically forbidden region (in which the wave-
function is exponentially damped, rather than oscillatory), which
is a “purely quantum mechanical” situation, you will find that the
Wigner function factorizes into a product of two functions: F(q, p) =
F1(q)F2(p). The momentum and position are totally uncorrelated in
such a state which clearly is the other extreme of the semi-classical
state in which the momentum is completely correlated with the po-
sition. The same decoupling of momentum and position dependence
occurs for many other states. One simple example is the ground state
of the harmonic oscillator for which you will find that the Wigner
function factorizes into two products, both Gaussian, in position and
momentum. So the ground state of the harmonic oscillator is as non-
classical as a state could get in this interpretation.



18 2 The Emergence of Classical Physics

The most useful way
to write S

We can express the action S in a different form which turns out to be
extremely valuable. To do this, we note that Eq. (2.10) can be expressed
as an integral over time as

S(t,q) =−
∫ t

t0
dt E +

∫ t

t0
q̇dt

√
2m(E −V ) . (2.28)

Along the classical trajectory determined by Eq. (2.4) with E =
(1/2)mq̇2 +V , this becomes:

S(t,q) =
∫ t

t0
dt
[
−
(

1
2

mq̇2 +V
)
+mq̇2

]
C

=
∫ t

t0
dt
[

1
2

mq̇2 −V
]

C
. (2.29)

The subscript C is a reminder that the integral is evaluated along the clas-
sical trajectory connecting, say, some q0 at t = t0 with q at time t. The
resulting S(t,q) is treated as a function of (t,q). We will now treat this
equation as defining S for all paths q(t) which start at some fixed q0 at
time t0 but are otherwise completely arbitrary; that is, the functions q(t)
need not necessarily satisfy Eq. (2.4). So we now consider the quantity
S[t,q;q(t)] defined by

S(t,q;q(t)] =
∫ t,q

t0,q0

dt L(q̇,q); L ≡ 1
2

mq̇2 −V (q), (2.30)

in which S depends on the upper end point of integration as well as on
the path q(t). Let us now vary the end point from (t,q) to (t +δ t,q+δq).
Originally, suppose we had a path q(t) which connected (t0,q0) and (t,q).
After varying the end points, we will have a different path q(t)+ δq(t)
which connect (t0,q0) and (t+δ t,q+δq). We can compute the value of S
for both these trajectories and ask what is the change δS due to our change
in the end point.

There are two ways of computing this change δS. The straightforward
way of computing δS is to treat it as a function of q and t at the end point
and evaluate the change in terms of partial derivatives using Eq. (2.14):

δS =
∂S
∂q

δq+
∂S
∂ t

δ t = pδq−Hδ t . (2.31)

There is, however, another way of computing it by explicitly varying the
path q(t), as well as the end points, in the expression for S in Eq. (2.30).
This will lead to the result

δS = L(q, q̇)δ t +
∫ q+Δq,t

q0,t0
δLdt . (2.32)
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This is non-trivial;
see Fig. 2.2!

Quantum mechanics
gives meaning to
classical action
principle

The first term arises because we changed t to t + δ t at the end point.
The second term has two contributions: (a) When the path is changed,
L changes by the amount:

δL =
∂L
∂q

δq+
∂L
∂ q̇

δ q̇ =

[
∂L
∂q

− d
dt

(
∂L
∂ q̇

)]
δq+

d
dt

(
∂L
∂ q̇

δq
)

(2.33)

and (b) the end point of the path changes from q to q+Δq. This allows us
to write Eq. (2.32), on using p = (∂L/∂ q̇), as:

δS =
∫

dt
(
∂L
∂q

− d
dt

(
∂L
∂ q̇

))
δq+ pΔq+Lδ t . (2.34)

The Δq, in turn, is made of two pieces. First, there is an ‘intrinsic’ change
due to δq at the end points. Second, when one makes only a δ t change
in the end point, one induces a change (−q̇δ t) in q (see Fig. 2.2). Hence,
the total change in q at constant t is given by Δq = δq− q̇δ t. Using Δq =
δq− q̇δ t in Eq. (2.34), we get:

δS =
∫

dt
(
∂L
∂q

− d
dt

(
∂L
∂ q̇

))
δq+ pδq+(L− pq̇)δ t . (2.35)

Equating the expressions for δS in Eq. (2.35) and Eq. (2.31) and re-
calling that H = pq̇−L, we find that the classical trajectory must satisfy
the condition

∂L
∂q

− d
dt

(
∂L
∂ q̇

)
= 0 . (2.36)

In other words, one can also determine the classical trajectory by starting
from the definition of action in Eq. (2.30) and demanding that δS = 0 for
variations of the trajectories with δq = 0 at the end points.

This gives us the standard Lagrangian-based action principle in clas-
sical mechanics. But note that such a variational principle means nothing
within the context of classical theory! Classically, a particle is supposed
to follow a specific trajectory and — at best — the value of S for this
classical trajectory could have some meaning. Defining a quantity S for
an arbitrary trajectory has no physical meaning within a classical theory.
The situation is quite different in quantum mechanics in which we have
no unique trajectory at all. Rather, all possible trajectories co-exist and a
classical trajectory is selected by the constructive interference condition.
We used the condition previously to give meaning to the Hamilton-Jacobi
equation. But one can play the same game with the action principle it-
self, which provides a powerful technique in quantum theory. We shall
say more about this in Chapter 17.

You would have noticed that we have actually proceeded in a direc-
tion opposite to the standard textbook description! Normally, you would
have started in your physics course with an action principle based on a
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t

q

q

t D
B

E

A
(t0, q0)

δt

C

δq

−q̇δt

Fig. 2.2: The variation of the action during the change of end points. The original path
connects the event A(t0,q0) with the event B(t,q). Varying t to t+δ t with fixed q, shifts
B to C (and the trajectory shifts from AB to AC). Varying q to q+δq with fixed t, shifts
B to D (and the trajectory shifts from AB to AD). Under simultaneous variation, the
change in q consists of two parts: (i) The part BD corresponding to the intrinsic change
δq, and (ii) the part BE induced by the change δ t in t, given by (−q̇δ t). Therefore, the
net change in q at constant t is given by Δq = δq− q̇δ t.

Jacobi-Mapertuis
action

Lagrangian L(q̇,q), defined a Hamiltonian as H = pq̇−L, written down a
Hamilton-Jacobi equation as in Eq. (2.14), etc. The Schrödinger equation,
on the other hand, leads naturally to the Hamilton-Jacobi equation and the
functional form of S(t,q) obtained by integrating the Lagrangian for the
classical trajectory. So when you go from quantum mechanics to classical
mechanics, the usual procedure is indeed reversed!

As an aside, let me also comment on another issue related to the form of
the action functional that we have obtained in Eq. (2.30). The action which
we found directly from quantum theory, as the phase of the wavefunction,
has the form of Eq. (2.10). If we leave out the time dependence of the
phase, we are left with an action which is an integral of p(q,E)dq where
p(q,E) is the momentum of the particle with energy E when it is at the
location q. This is structurally quite different from the action in Eq. (2.30)
and it is worth analyzing it a bit.

To see what is involved, let us generalize from one dimension to, say,
D = 3 and consider a situation in which we are only interested in vari-
ous trajectories connecting two points in space xα1 and xα2 , irrespective of
their parameterization. We can then describe the curves with some param-
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Path finder

But why is the
Lagrangian K −V ?

eter λ by giving the D functions xα(λ ). This parameter λ is irrelevant
and we could have described the same curves by some other set of func-
tions obtained by changing the parameterization from λ → f (λ ). We now
want to construct an extremum principle from which we can determine
the classical trajectory as a geometrical curve without any reference to the
parametrization. The relevant action functional for this extremum problem
(called the Jacobi-Mapertuis action) is given by

AJ =
∫ xxx2

xxx1

pαdxα =
∫ λ2

λ1

dλ
(
∂L
∂ ẋα

)
ẋα , (2.37)

where the overdot now represents derivative with respect to the parame-
ter λ used to parametrize the curves xα(λ ). It can be easily verified that
the modified action principle based on AJ in Eq. (2.37) leads to the actual
paths in space as a solution to the variational principle δAJ = 0 when we
vary all trajectories connecting the end points xα1 and xα2 . This trajectory
will have energy E, but will contain no information about the time coordi-
nate. In fact, the first form of the action in Eq. (2.37) makes clear that there
is no time dependence in the action. The curves remain the same and the
invariance of the action under the reparameterization expresses this fact.

It is possible to rewrite the expression for AJ in a nicer form. Using the
fact that L is a homogeneous quadratic function of velocities, we have the
result

ẋα
(
∂L
∂ ẋα

)
= 2T = m

(
d�
dλ

)2

= 2 [E −V (xα)] , (2.38)

where T is the kinetic energy and � is the arc length of the path. Substitut-
ing into Eq. (2.37) we get

AJ =
∫ xxx2

xxx1

m
(

d�
dλ

)
d�=

∫ xxx2

xxx1

√
2m(E −V (xα))d� , (2.39)

which is again manifestly reparameterization invariant with no reference
to time. In some sense, this is a more natural form of the action which
arises directly from quantum theory rather than the action in Eq. (2.30).
After all, we are interested in the classical trajectory, not how that trajec-
tory is parameterized. We will say more about this action in Chapter 17.

All this is fine as long as you are told that the Hamiltonian is
H = p2/2m +V (so that you can write the Schrödinger equation) or
that the Lagrangian is L = (1/2)mq̇2 −V (so that you can develop quan-
tum mechanics from an action principle; see Chapter 17). But how do we
know this? Why is the Lagrangian given by such a strange combination?
The reason is pretty non-trivial and illustrates the point that exact theories
make more sense than approximate ones.

Let us first consider the non-relativistic free particle for which the ac-
tion is an integral over the kinetic energy. It is not very clear why min-
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Action makes better
sense in special
relativity than in
non-relativistic
mechanics

Warning! See
Chapter 15.

The raison d’être
for just two classical
fields

imizing this quantity should have any physical significance. But let us
next consider the special relativistic free particle following a worldline in
spacetime along some arbitrary curve with speed v(t). We attach a clock
to the particle and ask how much time (Δτ) will elapse in this moving
clock, when a stationary clock in the lab frame S shows a lapse of Δ t.
At any instant t, the particle is momentarily at rest in a comoving Lorentz
frame (S ′) boosted with respect to S by some velocity vvv(t). Since the
interval ds2 =−c2dt2 +dxxx2 has the same value in all Lorentz frames, we
can evaluate it in S and (S ′) and equate the results. In the comoving
frame of the clock (S ′), we have ds2 = −c2dτ2 since dxxx2 = 0, while in
S , we have ds2 =−c2dt2 +dxxx2 =−c2dt2[1− v2(t)/c2]. So we get:

τ =
∫

dt
(

1− v2(t)
c2

)1/2

, (2.40)

which — called the proper time — is clearly an invariant quantity. Note
that this expression is valid for clocks in an arbitrary state of motion,
including accelerated motion. (I stress this because students sometimes
think that this result is valid only for inertial motion of the clock.)

It makes some physical sense to claim that ‘particles follow a trajectory
of least time’ and take the action to be proportional to τ . If we take the
proportionality constant as −mc2, we can ensure a suitable limit when
(v/c)� 1:

S = −mc2τ

= −mc2
∫

dt
(

1− v2(t)
c2

)1/2

→
∫

dt
[

1
2

mv2 −mc2
]
. (2.41)

So you see, the action for a non-relativistic particle, being an integral over
kinetic energy, acquires the nice interpretation of extremizing the proper
time, in special relativity, if we ignore the constant −mc2.

This is fine for a free particle but what about a particle in an elec-
tromagnetic or a gravitational field? We now have to make sure that any
external field we introduce respects special relativity. This limits the kind
of expressions we can integrate over to get S. We can only use

S = c1

∫
ds+ c2

∫
A jdx j + c3

∫ √
−gi jdxidx j , (2.42)

up to quadratic order, where the ci-s are constants, A j is a four-vector and
gi j is a second rank tensor. Since ds =

√−ηi jdxidx j, you can get the first
term as a special case of the last by taking gi j = ηi j. So, up to quadratic
order, we can only use

S = c2

∫
A jdx j + c3

∫ √
−gi jdxidx j , (2.43)
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with just two external fields: A j gives you electromagnetism and gi j gives
you gravity!

With this structure, it is easy to show that in non-relativistic electrostat-
ics the Lagrangian will turn out to be kinetic energy minus electrostatic
potential energy; this is not true in general — even in electromagnetism
it is not true when we go beyond electrostatics. The reason we use kinetic
energy minus potential energy for gravity is a lot more beautiful. Believe
it or not, this is because gravity affects the flow of time!! We will learn
this in Chapter 11.



You would have
solved Kepler prob-
lem in two steps if
only you haven’t
taken courses in
classical mechanics!

Step 1: Solve for vvv

3Orbits of Planets are Circles!

Yes, it is true. And no, it is not the cheap trick of tilting the paper at an
angle to see an ellipse as a circle. The real trick is a bit more sophisticated.
It turns out that the trajectory of a particle, moving under the attractive
inverse square law force, is a circle (or part of a circle) in the velocity
space (The high-tech name for the path in velocity space is hodograph).

The proof is quite trivial and, in fact, the entire Kepler problem is quite
trivial but for the textbooks making it complicated. If you think straight
you can solve it in couple of steps, as I will now show.

To set the stage, we start with the result that, for particles moving un-
der any central force f (r)eeer, the angular momentum JJJ === rrr ××× ppp is con-
served. Here rrr is the position vector, ppp is the linear momentum and eeer
is the unit vector in the direction of rrr. This implies that the motion is
confined to the plane perpendicular to JJJ which we take to be θ = π/2
plane. (The constancy of J = mr2φ̇ also gives Kepler’s second law, since
(r2φ̇/2) = J/2m ≡ h/2 is the area swept by the radius vector in unit
time.) Let us introduce in this plane the polar coordinates (r,φ ) as well
as the Cartesian coordinates (x,y). Let the unit vector in the φ direction
be eeeφ with Cartesian components (−sinφ ,cosφ ) which satisfies the rela-
tion deeeφ/dφ = −eeer. So we have (this is the first of the two-step deriva-
tion!):

dvvv
dφ

=
v̇vv
φ̇
=−GM

h
eeer =

GM
h

deeeφ
dφ

, (3.1)

where we have used r2φ̇ ≡ h and v̇vv =−(GM/r2)eeer to arrive at the second
equality. It follows that vvv− (GM/h)eeeφ is a constant vector which we will
denote by www. Therefore

vvv = www+
GM

h
eeeφ . (3.2)
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Step 2: Get the
trajectory!

All standard results
recovered

Taking a dot product of this equation with eeeφ we obtain (this is the second
and final step of the derivation!)

vvv ··· eeeφ = vφ =
h
r
= wcosφ +

GM
h

≡ GM
h

(1+ ecosφ) , (3.3)

where we have used vφ = rφ̇ = h/r and defined constant e by the relation
w ≡ (GM/h)e. This is clearly a conic section with eccentricity e and latus
rectum (GM/h2). We have also oriented the axes such that www is along
the y-axis so that the angle φ between www and eeeφ is the same as the angle
between rrr and the x-axis. So you see, it is really easy.

Most of the remaining part of the chapter is devoted to appreciating
different aspects of this result and we will do it slowly, savoring every
moment.

Let us start with the result in Eq. (3.2), which tells you that
(vvv−−−www)2 = (GM/h)2; that is, the tip of the vector vvv moves on a circle
of radius GM/h centered at www! To see this more explicitly, let us choose
(say) vx(φ = 0) = 0;vy(φ = 0) = u and obtain from Eq. (3.2) the result:

www =
GM

h
eŷyy =

[
u−

(
GM

h

)]
ŷyy (3.4)

so that u = (GM/h)(1+ e). (Here ŷyy is a unit vector in the y-direction.)
Then vvv satisfies the condition (the “hodograph”):

v2
x +

(
vy − GM

h
e
)2

=

(
GM

h

)2

, (3.5)

which is a circle with center at (0,eGM/h) and radius GM/h. So you see,
planets do move in circles, as advertised!

It is clear that the structure of the hodograph depends vitally on the
ratio between u and GM/h; that is on e. The geometrical meaning of e is
clear from Fig. 3.1.

• If e= 0, i.e, if we had chosen the initial conditions such that u=GM/h,
then the center of the hodograph is at the origin of the velocity space
and the magnitude of the velocity remains constant. Writing h = ur,
we get u2 = GM/r leading to a circular orbit in the real space as well.

• When 0 < e < 1, the origin of the velocity space is inside the hodo-
graph. As the particle moves, the magnitude of the velocity changes be-
tween a maximum of (1+e)(GM/h) and a minimum of (1−e)(GM/h).

• When e = 1, the origin of velocity space is at the circumference of the
hodograph and the magnitude of the velocity vanishes at this point. In
this case, the particle goes from a finite distance of closest approach
to infinity, reaching infinity with zero speed. Clearly, e = 1 implies



3 Orbits of Planets are Circles! 27

vyGM

h

v

φ

e
GM

h

vx

vy

vx
O

GM

h

A

B

Ce
GM

h

φ

Fig. 3.1: Left: The orbit of a planet in the velocity space moving under the action of an
attractive (1/r2) force. This is a circle with center at (0,e(GM/h)) and radius GM/h.
Here e is just a constant, M is the mass of the Sun and h is the conserved angular
momentum per unit mass. Note that the circle is displaced with respect to the origin
making the velocity of the planet vary between a maximum and minimum values as
long as e < 1. This figure is drawn for e < 1. Right: Orbit in the velocity space, as in
the left figure, but for the case of e > 1. Only part of the circular arc is relevant for the
motion of the planet which is now moving in an unbounded trajectory in real space.

Try it out!

The geometrical
reason

u2 = 2GM/rinitial which is just the text book condition for escape ve-
locity.

• When e > 1, the origin of velocity space is outside the hodograph
and Fig. 3.1 shows the behaviour in this case. The maximum velocity
achieved by the particle is OB when the particle is at the point of closest
approach in real space. The asymptotic velocities of the particle are OA
and OC obtained by drawing the tangents from O to the circle. From
the figure is is clear that sinφmax = e−1. During the unbound motion of
the particle, the velocity vector traverses the part ABC. It is circles all
the way! (Incidentally, the minor arc AC of the hodograph represents
the motion under repulsive inverse square force; using the geometri-
cal tricks of this chapter, you should be able to obtain the Rutherford
scattering formula from the hodograph. )

An intuitive way of understanding why the hodograph is a circle is
as follows: Let us divide the total angle 2π into N equal parts with
δφ ≡ (2π/N) with a very large N. Let the position of the particle be rrrn
when the angle is φn ≡ nδφ = n(2π/N). In this discretised version, the
particle moves by an amount δφ jumping from one vertex of a large poly-
gon to another in real space in a time interval δ t. The corresponding jump
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Kepler as a limit
of non-Kepler

Solvable at no extra
cost since there
is always a J2/r2

term!

in the velocity is by δvvvn = −(GM/r2)eeernδ t according to Newton’s law,
while δφ = (h/r2)δ t from the conservation of angular momentum ex-
pressed as r2φ̇ = h. So, δvvvn =(GM/h)eeernδφ . Clearly the magnitude of the
change in the velocity is a constant equal to (GM/h)(2π/N); and direction
changes always by the same angle because δvvvn ·δvvvn+1 ∝ eeern ·eeern+1 = δφ .
Therefore, it is clear that, δvvvn takes the velocity vector from one vertex
of a regular polygon to next vertex in the velocity space. In the limit of
N → ∞, δφ → 0 the polygon becomes a circle.

All these must have convinced you that there is something magical
about the inverse-square force which is worth exploring. One nice way of
understanding the peculiar features of the Kepler (or Coulomb; we will
use these interchangeably) problem is to start with a slightly more general
potential — which does not have these peculiar features — and treat the
Kepler problem as a special case of this more general situation. This can
be done in many different ways and I will choose to study the dynamics
under the action of the potential given by

U(r) =−α
r
+

β
r2 , (3.6)

which, of course, reduces to the attractive Coulomb/Kepler potential when
β → 0+. For the sake of definiteness, I will take α > 0 and β ≥ 0 though
most of the analysis can be generalized to other cases.

The classical motion of a particle of mass m, in 3-dimensions, under
the action of U(r) is straightforward to analyze using the standard text-
book description of a central force problem. Just for fun, let us do it in a
slightly different manner. We know that, as with any central force prob-
lem, angular momentum JJJ is conserved, confining the motion to a plane
which we will take to be θ = π/2. Using J = mr2φ̇ , the energy of the
particle can be expressed as

E =
1
2

m
(

ṙ2 +
J2

m2r2

)
− α

r
+

β
r2 . (3.7)

Combining the two terms with (1/r2) dependence into C2/r2 where
C2 = (J2/2m)+β and completing the square, we get the relation

E +
α2

4C2 =
1
2

mṙ2 +

(
C
r
− α

2C

)2

≡ E 2 , (3.8)

where E is another constant. This suggests introducing a function f (t) via
the equations√

m
2

ṙ = E sin f (t) ;
(

C
r
− α

2C

)
= E cos f (t) . (3.9)
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Let us count

The collapse of a
dimension

The www comes to the
rescue!

Differentiating the second equation with respect to time and using the first
equation will give you an expression for ḟ . Dividing this expression by
φ̇ = J/mr2 leads to the simple relation (d f/dφ) = (2mC2/J2)1/2. There-
fore, f is a linear function of φ and from the second equation in Eq. (3.9)
we get the equation to the trajectory to be

(2C2/α)
r

= 1+
(

2EC
α

)
cos(ωφ) , (3.10)

where

ω2 =
2m
J2 C2 =

(
1+

2mβ
J2

)
. (3.11)

More generally, we get (φ −φ0) instead of φ in Eq. (3.10); we have ori-
ented the axes to set φ0 = 0.

Now that we have solved the problem completely, let us look at the
properties of the solution. To begin with, let us ask what kind of orbit
we would expect given the known symmetries of the problem. A parti-
cle moving in 3 space dimensions has a phase space which is 6 dimen-
sional. For any time independent central force, we have constancy of en-
ergy E and angular momentum JJJ. Conservation of these four quantities
(E,Jx,Jy,Jz) confines the motion to a region of 6 − 4 = 2 dimensions.
The projection of this phase space trajectory on to the xy plane will, in
general, fill a two dimensional region of space. So you would expect the
orbit to fill a finite two dimensional region of this plane, if there are no
other conserved quantities. This is precisely what we find from Eq. (3.10)
for a generic value of the conserved quantities J and E. Because ω will
not be an integer, when φ changes by 2π , the cosine factor will pick up
a term cos(2πω) which will not be unity. In general, the orbit will fill
a 2-dimensional region in the plane between two radii r1 and r2. (See
Fig. 3.2.)

We can now see how the Kepler (Coulomb) problem becomes rather
special. In this case, we have β = 0 making ω = 1. The curve in Eq. (3.10)
closes on itself for any value of J and E and — in fact — becomes an el-
lipse with the latus-rectum p = (2C2/α) and eccentricity e = (2EC/α).
(You can verify that this is indeed the standard textbook solution to the
Kepler problem.) So when β = 0,ω = 1 the orbit closes and becomes
a one-dimensional curve rather than filling a 2-dimensional region. This
analysis shows how turning on a non-zero β completely changes the topo-
logical character of the orbit.

In the argument given above, we linked the nature of the orbit to the
number of conserved quantities for the motion. Given the fact that β =
0 reduces the dimension of the orbital space by one, we will expect to
have one more conserved quantity in the problem when β = 0 which does
not exist for β �= 0. But we already know one such extra constant which
exists for β = 0 and not otherwise! This is precisely www = vvv− (GM/h)eeeφ
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Fig. 3.2: (a) The precessing ellipse as a solution to Eq. (3.10). The vector shows the
direction of major axis which precesses. (b) Over a span of time, the orbit fills a 2-
dimensional region in the plane for generic values of the parameters. The hodograph
in velocity space shows similar behaviour with the velocity vector filling an annular
region.

which we discovered in Eq. (3.2). But we needed only one constant of
motion while we now have got 3 components of www which will prevent
the particle from moving at all! Such an overkill is avoided because www
satisfies the two, easily verified, constraints because of which it has only
one independent component. First, it is obvious that www ···JJJ = 0 because www is
in the orbital plane; this reduces the number of independent components
of www from 3 to 2. Second, its magnitude w can be expressed in terms of
E and h and thus is not an independent constant. This is easily seen as
follows: Writing (1/r) = vvv ··· eeeφ/h (which is a cute trick), the conserved
energy of the particle is given by

E =
1
2

m
(

v2 − 2GM
h

vvv ··· eeeφ
)
=

1
2

m
(
[vvv− (GM/h)eeeφ ]2 − G2M2

h2

)

=
1
2

m
(

w2 − G2M2

h2

)
, (3.12)

showing w2 is a constant given by

w2 =
2E
m

+
G2M2

h2 . (3.13)

This further reduces the number of independent constants constrained in www
from 2 to 1, exactly what we needed. It is this extra constant that keeps the
planet on a closed orbit. The natural question which arises at this stage is
the following: What does this constant mean, geometrically or physically?
We will now discuss this issue.

We have developed the entire theory rather trivially by using the nat-
ural constant www. In standard literature, one often uses another constant AAA
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Shadow of
hodograph in
real space

... though discovered
by several others;
see Box 3.1

closely related to www. To motivate this constant, we consider the following
question: Is it possible to represent both the hodographic circle (which
lives in the velocity space) and the orbital ellipse (which lives in the real
space) together in the real space itself? To do this sensibly we need to
address two issues:

(i) Figure 3.1 shows that, in the velocity space, the angle φ is measured
from the vy axis while in the real space the angle φ is measured from the
x−axis. This tells you that, if we want to plot the hodographic circle as
well as the orbital ellipse in the same space, it is more natural to use a
vector rotated by 90 degrees with respect to the velocity vector. This can
be easily done by taking the cross product of the velocity vector with a
unit vector in the direction of JJJ.

(ii) The vectors vvv and rrr, of course, have different dimensions and we
need to take care of it. This can be done by multiplying the velocity vector
by J/|E|.

These two facts together suggests defining and studying a vector
(JJJ ××× www)/|E| rather than www as a conserved vector. A simple calculation
shows that

RRRF ≡ JJJ×××www
|E| =

JJJ××× vvv
|E| − GMm

|E| (ẑzz××× eeeφ ) =
1
|E| (JJJ××× vvv+GMmeeer)

= − 1
m|E| (ppp××× JJJ−GMm2eeer)≡− AAA

m|E| =
AAA

mE
. (3.14)

To arrive at the second equality, we have used Eq. (3.2) and JJJ = Jẑzz; to
obtain the third equality, we have used the fact (ẑzz××× eeeφ ) = −eeer. The fifth
equality defines the vector AAA (called Runge-Lenz vector).

The conventional route to Runge-Lenz vector starts by computing the
time derivative of the quantity (ppp× JJJ) in any central force f (r)eeer and
obtaining:

d
dt
(ppp××× JJJ) =−m f (r)r2 deeer

dt
. (3.15)

The miracle of inverse square force is now again in sight: When f (r)r2 =
constant =−α , (with α = GMm in our case) we find that the vector:

AAA ≡ ppp××× JJJ−αmeeer (3.16)

is conserved. For future reference, let us note the two easily derived prop-
erties of AAA.

A2 = 2mJ2E +α2m2; AAA ··· JJJ = 0 , (3.17)

which are equivalent to Eq. (3.13) and www ··· JJJ = 0.
The vector RRRF has direct physical interpretation unlike AAA (which, alas,

is what people tend to use). The RRRF points from the center of attraction
(which is at one focus of the ellipse) to the other focus! It is easy to see
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(for example, using the initial conditions) that RRRF points along the major
axis away from the center of attraction. Its magnitude is

A2

m2|E|2 =− 2J2

m|E| +
G2M2m2

|E|2 =

(
GMm
|E|

)2 [
1− 2|E|J2

G2M2m3

]
. (3.18)

The first factor in the final expression is 4a2 where a is the semi-major
axis and the second factor is e2. Therefore, RF = 2ae which is precisely
the distance between two foci of the ellipse.

Using RRRF we can write the velocity of the particle in the form

vvv××× JJJ
|E| =−RRRF +Rmaxeeer; Rmax ≡ GMm

|E| = 2a . (3.19)

The second relation defines Rmax which is the maximum distance from
the center of attraction which a particle of energy −|E| can wander off.
Eq. (3.19) a remarkable relation in more than one way. To begin with,
it gives you the velocity (re-scaled by J/|E| and rotated by 90 degrees,
for reasons we explained earlier) in terms of vectors in coordinate space.
Second, it shows that the hodograph, when brought back to real space,
has a simple geometrical relationship to the elliptical orbit — which is
shown in Fig. 3.3. We have now achieved our ambition of drawing both the
elliptical orbit and the velocity orbit in the same space. In the process, we
have discovered a nice vector RRRF proportional to the Runge-Lenz vector
used in the literature.

Incidentally, Fig. 3.3 can be used to provide an elegant (and purely
geometrical) derivation for the fact that the orbit is an ellipse. Let us start
with the center of force F1 and draw the position vector rrr and the velocity
vector vvv of the particle at some time t. We are further given that vvv satisfies
the first relation in Eq. (3.19) which is the same as the result in Eq. (3.2);
so we have already used the fact that the particle is moving in an inverse
square law force. We will now draw a circle centered at F1 with the radius
Rmax = (GMm/|E|) where −|E| is the conserved energy of the particle.
We project the point P on to this circle getting P′. At this stage, we have
fixed (in the Fig. 3.3) F1,P,P′ and a vector vvv representing the velocity of
the particle.

We now reflect the vector PP′ (denoted, say, by ���≡ Rmaxeeer − rrr) on the
velocity vector vvv. In general, reflecting a vector qqq on a plane with unit
normal n̂nn leads to the vector q̃qq = qqq− 2(qqq ··· n̂nn)n̂nn. In our case, the relevant
normal can be taken to be

n̂nn = ẑzz× (vvv/v) =
1
Jv

(JJJ× vvv) =
|E|
Jv

(RRRF −Rmaxeeer) . (3.20)
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Fig. 3.3: Representation of both position and velocity trajectories in the real space.
The particle (“planet”) P moves in an elliptical orbit with foci F1 and F2 with the
center of attraction being F1. A circle is drawn with center at F1 and radius Rmax =
(GMm/|E|) = 2a (where E =−|E| is the energy of the particle and a is the semi-major
axis of the ellipse). As the position vector rrr traces the elliptical trajectory, its image P′
traces this circle. The vector F2P′ gives (vvv××× JJJ)/|E| which is essentially the velocity
vvv rotated by 90 degrees in the clockwise direction and rescaled by J/|E| to get length
dimension. Given the position P at any time, we can determine P′ and draw F2P′. Its
length multiplied by |E|/J gives the magnitude of the velocity of the particle at P; the
direction of the velocity is in the direction of PQ which is the perpendicular bisector
to F2P′. The figure illustrates the key relation in Eq. (3.19) which can be re-written as
Rmaxeeer − (vvv××× JJJ/|E|) = a constant vector, F1F2, connecting the two foci. In fact, one
can obtain the elliptical orbits just from this result using the hodographic circle as the
directrix circle for the ellipse.

The reflected vector �̃�� is given by

�̃�� = ���−2(��� ··· n̂nn)n̂nn = (Rmaxeeer − rrr)−2
(

Rmax

r
−1

)
(rrr ··· n̂nn)n̂nn

= (Rmaxeeer − rrr)+
2J
mv

(
Rmax

r
−1

)
n̂nn , (3.21)

where we have used the result (rrr ··· n̂nn) = (1/v)[ẑzz · (vvv× rrr)] = −J/mv. The
second term can be simplified using Eq. (3.20) to give:

2J
mv

(
Rmax

r
−1

)
n̂nn =

(RRRF −Rmaxeeer)

[(1/2)mv2]

(
GMm

r
+E

)
= (RRRF −Rmaxeeer) ,

(3.22)
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so that we get �̃��= RRRF − rrr. That is,

rrr+ �̃��= RRRF (3.23)

is a constant vector! From the Fig. 3.3 we see that, as P moves along its
— as yet unknown — trajectory and P′ moves along the circle, F2 remains
unchanged. Since, by construction, PF2 = PP′, it follows that the sum of
the lengths F1P+F2P remains constant as P moves. This is precisely an
ellipse with foci at F1 and F2.

Box 3.1: Runge-Lenz vector, or is it?

Any conserved quantity is of considerable significance in physics and
this is especially the case in a problem as important as the one of plan-
etary motion. Given the fact that the existence of the conserved vector
AAA immediately solves the Kepler problem, it would be interesting to
ask who discovered it. Its history is quite fascinating.

It appears that the magnitude of this vector, as a conserved quan-
tity, first appeared in the work of Jacob Hermann [4] in the year 1710.
His work was generalized by Bernoulli [5] in the same year, making
it a vector, by giving it a direction and magnitude. By the end of
the century, Laplace [6] rediscovered the conservation of AAA working
everything out analytically rather than geometrically. The next im-
portant contribution was from Hamilton [7] who, in the middle of
nineteenth century, derived this vector in a slightly modified form so
that its magnitude is equal to the eccentricity of the orbit. He called
it the eccentricity vector and also used it to obtain the hodograph for
the Kepler motion.

This vector appears later on in two vector analysis text books, one
by Gibbs [8] and another one by Carle Runge [9]. Years later, in 1924,
Wilheim Lenz [10] used this vector for a quantum mechanical treat-
ment of the hydrogen atom. (We will discuss a modern version of this
in Chap. 4.) Runge makes no claim of originality in his text book but
Lenz refers to Runge in his work. Later on, when Pauli was using
a similar technique for the hydrogen atom, he refers to it as “pre-
viously utilized by Lenz” and from then on the name Runge-Lenz
vector stuck though both Runge and Lenz are quite innocent of dis-
covering this vector!

Given the importance to planetary motion, it is also good to know
who did not discover it: Newton did not, in spite of all his geometri-Name one person

who did not discover
it!

cal insights and analytical ingenuity! Scholars have looked in vain for
something like the vector AAA in Newton’s works hoping that he might
have recognized it but that does not seems to be the case.
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Easy when you note
that A2 is the sum of
area of ΔF1F2P and
the standard area
swept by the planet

Very simple, but
quite useful!

The way we approached the problem also shows that the second fo-
cus F2 of the ellipse is not without some significance, as is sometimes
thought to be. The Fig. 3.3 shows that the vector F2P′ contains the infor-
mation about the velocity! Incidentally, using the vector relations obtained
above, one can also compute the rate dA2/dt at which area is swept by the
vector F2P as the planet moves on the elliptical orbit. It is easy to show
that the area swept out is proportional to the Jacobi-Mapertuis action (see
Eq. (2.39)) for the system:

A2 =
J

4|E|
∫

v2dt =
J

4|E|
∫

vd� . (3.24)

The second focus F2 plays a role in this too. (This result has appeared
in some classic textbooks with a fairly complicated derivation; see, for
example, Ref. [11]. The approach described above provides a simple way
of obtaining this result.)

Usually, one associates the conservation laws with the existence of
certain symmetries. We know that the time translation symmetry of the
Lagrangian leads to energy conservation, spatial translation leads to mo-
mentum conservation and rotational invariance leads to the conservation
of angular momentum. More generally, consider the variation xxx(t) →
xxx(t)+δxxx(t). The corresponding change in the velocity is given by vvv(t)→
vvv(t)+δvvv(t) where δvvv(t) = dδxxx(t)/dt. Suppose you can find a particular
δxxx(t) (which is a function of xxx,vvv) so that, under such a variation, the La-
grangian changes only by a total derivative; that is, δL = dF/dt where F
is a function of (xxx,vvv). This result should arise purely from the structure of
the original Lagrangian without using equations of motion. On the other
hand, explicit variation of the Lagrangian gives

δL = ( fff − ṗpp) ·δxxx+
d(ppp ···δxxx)

dt
; fff ≡ ∂L

∂xxx
; ppp ≡ ∂L

∂ ẋxx
. (3.25)

Equating this to dF/dt, we get

dC
dt

= ( ṗpp− fff ) ·δxxx; C ≡ ppp ···δxxx−F . (3.26)

So we find that — when the equations of motion ṗpp = fff hold — we have
the conservation law for the quantity

C = ppp ···δxxx−F . (3.27)

The difficult part, of course, is to find a δxxx such that the right hand side of
Eq. (3.26) is indeed a time derivative.

As a rather trivial example, consider δxxx = ΩΩΩ ××× xxx which would rep-
resent rotation of the coordinates about a direction characterized by ΩΩΩ
which is assumed to be an infinitesimal vector. If the potential is spher-
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Formally, the
symmetry trans-
formation δqi

corresponding to a
constant of motion
C(q, p) is given by
the Poisson bracket
δqi = {qi,C}, but let
us keep it simple.

ically symmetric, fff will be in the direction of xxx and hence fff ··· δxxx will
vanish. On the other hand, we have

ṗpp ·δxxx = ṗpp · (ΩΩΩ ××× xxx) =ΩΩΩ · (xxx××× ṗpp) =
d
dt
(ΩΩΩ ··· JJJ) , (3.28)

where we have used the fact J̇JJ = xxx××× ṗpp and that ΩΩΩ is a constant vector.
Equation (3.26) now tells you that C =ΩΩΩ ···JJJ is conserved for all ΩΩΩ which,
in turn, requires JJJ to be conserved. This is the well known result that
rotational invariance lead to conservation of angular momentum.

Is there a symmetry of the Lagrangian corresponding to some δxxx
which will lead to the conservation of Runge-Lenz vector? Indeed there
is, though this is a bit of a non-trivial transformation given by:

δxxx = aaa× (ppp××× xxx)+ xxx××× (((ppp×××aaa))) , (3.29)

where aaa is an arbitrary, constant, infinitesimal vector (like the ΩΩΩ in the
previous example). To discover this transformation, we can use Eq. (3.26)
to do a bit of reverse-engineering! Suppose you do know that a specific
function C(xxx, ppp) is indeed conserved. Then if you compute dC/dt and
group together the terms in the form of Eq. (3.26), you can read off δxxx. In
the case Runge-Lenz vector, we take C = aaa ·AAA and compute dC/dt, using
the identity

deeer

dt
=− 1

r3 ((ẋxx× xxx)× xxx) =− 1
mr3 (xxx× JJJ) (3.30)

and carefully group together terms involving ṗpp. This gives

aaa · ȦAA = aaa · (ṗpp× JJJ)+aaa · (ppp× (xxx× ṗpp))+
GMm

r3 (xxx× JJJ) ·aaa
= ṗpp · (JJJ×aaa)+(aaa ··· xxx)(ṗpp · ppp)− (ṗpp ·aaa)(ppp · xxx)+(− fff · (JJJ×aaa))

= ṗpp · [(JJJ×aaa+ ppp(aaa · xxx)−aaa(ppp · xxx)]− fff · (JJJ×aaa)

= ṗpp · [(JJJ×aaa+ xxx× (ppp×aaa)]− fff · (JJJ×aaa)

= ṗpp ·δxxx− fff ·δxxx (3.31)

with
δxxx = JJJ×aaa+ xxx××× (((ppp×××aaa))) . (3.32)

We can now see that δxxx is indeed given by the expression in Eq. (3.29).
Note that the second term in δxxx is perpendicular to xxx and does not con-
tribute to the fff · δxxx in Eq. (3.31). One can remove the arbitrary vector aaa,
if one wants and write down an expression for the infinitesimal transfor-
mation relevant to the conservation of the s-th component of AAA. It is given
by

δxi =
ε
2
[2pixs − xi ps −δis(xxx · ppp)] ; (i = 1,2,3) , (3.33)
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Change in AAA
measures the
precession rate

Do not confuse
u ≡ 1/r with
velocity defined
earlier!

What happens when
relativity steps in?

where ε is a constant infinitesimal parameter. That is, you change
(x1,x2,x3) in the above manner keeping s fixed at some value 1 or 2 or
3. (It is probably nicer to think in terms of Eq. (3.29).) You may wonder
why such a strange δxxx exists. It is possible to relate this to rotations in
a fictitious 4-dimensional space (see Chapter 4) but unfortunately it does
not make it any more enlightening.

We can close the logical loop by asking what happens to the eccen-
tricity vector when we add a β/r2 term to the 1/r potential. Obviously,
if you add a 1/r3 component to the force, (which can arise, for exam-
ple, from the general relativistic corrections or because the Sun is not
spherical and has a small quadrupole moment) JJJ and E are still conserved
but not AAA. If the perturbation is small, it will make the direction of AAA
slowly change in space and we will get a “precessing” ellipse, which will
of course fill a 2-dimensional region. For the potential in Eq. (3.6) we
find, using Eq. (3.15), that the rate of change of Runge-Lenz vector is
now given by ȦAA =−(2βm/r)(d/dt)(rrr/r). The change ΔAAA per orbit is ob-
tained by integrating ȦAAdt over the range (0,T ) where T is the period of the
original orbit. Doing one integration by parts and changing the variable of
integration from t to the polar angle φ , we get ΔAAA per orbit to be

ΔAAA
∣∣
orbit =−2βm

∫ 2π

0

rrr
r3

dr
dφ

dφ . (3.34)

Let us take the coordinate system such that the unperturbed orbit orig-
inally had AAA pointing along the x−axis. After one orbit, a ΔAy compo-
nent will be generated and the major axis of the ellipse would have pre-
cessed by an amount Δφ = ΔAy/A. The ΔAy can be easily obtained from
Eq. (3.34) by using y = r sinφ , converting the dependent variable from
r to u = (1/r) and substituting (du/dφ) = −(A/J2)sinφ [which comes
from Eq. (3.3)]. This gives the angle of precession per orbit to be

Δφ =
ΔAy

A
=

2βm
A

∫ 2π

0
sinφ

du
dφ

dφ =−2πβm
J2 . (3.35)

Since we have the exact solution in Eq. (3.10), you can easily verify that
this is indeed the precession of the orbit when β/r2 is treated as a per-
turbation. The Runge-Lenz vector not only allows us to solve the (1/r)
problem, but even tells us how an r−2 perturbation makes the orbit pre-
cess! This is indeed the primary effect when we introduce physically rel-
evant modifications to the Kepler problem.

The first generalization of the Kepler problem that you might think of
will be to introduce the effects of special relativity. This turns out to be
more non-trivial than one might have imagined for the following reason.
In the non-relativistic context, the motion of a particle under the action of a
potential V is governed by the equation d pα/dt =−∂αV where α = 1,2,3
denotes the three spatial components of the momentum ppp and ∂α denotes
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Relativity prevents
irresponsible addi-
tion of interactions

This is why forces
are velocity depen-
dent in relativistic
theories

Hamilton-Jacobi
for central force:
general case

the derivative with respect to the coordinate xα . One might have thought
that the natural generalization of this Newtonian result into special rel-
ativistic domain would involve the following replacements: Change the
three momentum pα to the four momentum pi (with i = 0,1,2,3), the
coordinate time t into the proper time τ of the particle and the three
dimensional gradient ∂α to the four-gradient ∂i. This would have led to
the equation d pi/dτ = −∂iV . Unfortunately, there is a problem with this
“generalization”. The four-velocity ui satisfies the constraint:

uiui =
dxidxi

dτdτ
=−dτ2

dτ2 =−1 . (3.36)

Since the four-momentum is pi = mui, we have the constraint

ui d pi

dτ
= mui dui

dτ
=

m
2

d
dτ

(uiui) = 0 , (3.37)

and we have used Eq. (3.36). This implies that our potential V has to
satisfy the constraints ui∂iV = 0; that is, the potential should not change
along the worldline of the particle which is not possible in general.

So the generalization to special relativity has to come from some other
direction. One possibility is to note that the “Kepler problem” also arises
in electrodynamics when we consider the motion of a test charge in the
Coulomb field of another charge. Since we have a fully special relativistic
formulation of electrodynamics, we can attempt to study the motion of
a particle under the action of a four-vector potential Ai = (Φ(r),0,0,0)
which would correspond to a centrally symmetric electrostatic potential.

The study of orbits in external fields is most economically done using
the Hamilton-Jacobi equation which — as we saw in Chapter 2 — has
the blessings of quantum theory. Since energy E and angular momentum
J will be conserved in all the contexts we consider, the action S can be
expressed in the form

S(t,r;E,J) =−Et + Jφ +F(r;E,J) , (3.38)

where (r,φ) are the standard polar coordinates in the plane of orbit and
F(r;E,J) has to be determined by integrating the Hamilton-Jacobi equa-
tion. The orbital equation r = r(φ) can be obtained by differentiating S
with respect to J and equating it to a constant:

φ +
∂F
∂J

= φ0 = constant . (3.39)

The different contexts we would be interested in, differ only in the na-
ture of Hamilton-Jacobi equation; once we obtain the orbital equation in
Eq. (3.39) one can compare the different models fairly easily.
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The Newtonian case

Add special
relativity

We recall that, in the case of standard Newtonian context, for parti-
cle moving in a central potential V (r), the Hamilton-Jacobi equation is
∂S/∂ t +H = 0. It is easy to show that F satisfies the equation(

dF
dr

)2

= 2m(E −V )− (J2/r2) . (3.40)

This, in turn, allows us to write the orbital equation in Eq. (3.39) in the
form

φ −φ0 =
∫ dr(J/r2)

[2m(E −V )− (J2/r2)]1/2 . (3.41)

Converting this into an equation for dr/dφ and introducing the standard
substitution u ≡ (1/r) we can obtain the differential equation satisfied by
u(φ):

u′′+u =− m
J2

dV
du

, (3.42)

where the prime denotes differentiation with respect to φ . In the standard
Kepler problem, V =−GMm/r =−GMmu so that the right hand side of
Eq. (3.42) becomes a constant and we get the solution u = α + β cosφ
which represents a conic section.

For the relativistic particle with charge q moving in an electromag-
netic field with Ai = (Φ ,0,0,0) the Hamilton-Jacobi equation is given by
Eq. (2.15) and the corresponding differential equation for F given by(

dF
dr

)2

=
1
c2 (V −E)2 − J2

r2 −m2c2; V (r)≡ qΦ(r) . (3.43)

It is fairly straightforward to show that, in this case, Eq. (3.42) gets modi-
fied to the form

u′′+u =− (E −V )

J2c2

(
dV
du

)
=−E/c2

J2
dV
du

+
1
2

1
J2c2

dV 2

du
. (3.44)

Comparing Eq. (3.44) with Eq. (3.42) we see that the first term involves
replacement of m by E/c2 which, of course, makes sense in relativity; the
second term shows that the potential picks up a V 2 term as a correction
which can be traced back to the fact that while the square of the momen-
tum is proportional to energy in the non-relativistic case, it is proportional
to the square of the energy in special relativity.

More formally, we can attempt to define a Newtonian effective po-
tential Veff using which we will obtain the same equation of motion. In
the case of motion in a Coulomb field with V (r) = −α/r = −αu where
α = Qq, say, this requires us to satisfy the condition

m
J2

dVeff

du
=− αE

J2c2 − α2

J2c2 u , (3.45)
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The special
relativistic
trajectory

The precession,
again!

which integrates to give

Veff =−
(

E
mc2

)
αu− α2

mc2
u2

2
. (3.46)

Since E/mc2 is γ , we can think of the first term as the original Coulomb
potential transformed to the rest frame of the moving body. The second
term is a purely relativistic correction. (Of course, Veff is not a ‘genuine’
potential because it depends on the parameters of the particle, like E.) In
this case, the orbit equation becomes:

u′′+ω2u =
αE
J2c2 ; ω2 ≡ 1− α2

J2c2 . (3.47)

The introduction of c by special relativity has led to a new dimensionless
combination (α/Jc). Obviously, we will expect new features — with no
non-relativistic analogue — to arise when (α/Jc) � 1, because ω will
be imaginary for (α/Jc) > 1. This is indeed true but let us first consider
the case of (α/Jc) < 1. In this case, the trajectory obtained by solving
Eq. (3.47) can be expressed in the form (compare with Eq. (3.10))

1
r
=

1
R

cos(ωφ)+
Eα

c2J2ω2 , (3.48)

where

R ≡ Jω2

mc

[(
E

mc2

)2

−1+
α2

c2J2

]−1/2

, (3.49)

is a constant. In a more familiar form, the trajectory is l/r = (1+ecosωφ)
with

l =
c2JJ2ω2

E|α | ; e2 =
J2c2

α2

[
1− m2c4ω2

E2

]
. (3.50)

It is easy to verify that, when c →∞, this reduces to the standard equation
for an ellipse in the Kepler problem. In terms of the non-relativistic energy
Enr ≡ E −mc2, we get, to leading order, ω ≈ 1, l ≈ J2/m|α | and e2 ≈
1+(2ENRJ2/mα2) which are the standard results.

In the fully relativistic case all these expressions change but the key
new effect arises from the fact that ω �= 1. Due to this factor, the trajectory
is not closed and the ellipse precesses. (See Fig. 3.2.) When ω �= 1 the r
in Eq. (3.48) does not return to the value at φ = 0 when φ = 2π; instead,
we need a further turn by Δφ (the ‘angle of precession’) for r to return to
the original value. This is determined by the condition (2π+Δφ)ω = 2π .
From Eq. (3.48) we find that the orbit precesses by the angle

Δφ = 2π

[(
1− α2

c2J2

)−1/2

−1

]
	 πα2

c2J2 (3.51)
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Fig. 3.4: Trajectory of a charged particle around another charge of opposite sign in spe-
cial relativistic “Kepler problem”. For sufficiently low angular momentum, the trajec-
tory spirals down to the center of attraction. This phenomenon has no non-relativistic
analogue.

Here is something
new!

Overcoming the
angular momen-
tum; a new special
relativistic feature!

per orbit where the second expression is valid for α2 � c2J2. This is a
purely relativistic effect and vanishes when c → ∞.

There is another peculiar feature which arises in the special relativistic
case which has no non-relativistic analogue. You would have noticed that
ω2 in Eq. (3.47) has two terms of opposite sign and in obtaining our result,
we have tacitly assumed that ω2 > 0. But in principle, one can have a
situation with very low but non-zero angular momentum making ω2 < 0.
This is a feature which non-relativistic Kepler problem simply does not
have and — under such drastic change of circumstances — one can no
longer think in terms of perturbation theory and precessing ellipses. The
Eq. (3.47) now has the solution

(
α2 − c2J2) 1

r
= ±c

√
(JE)2 +m2c2 (α2 − J2c2)

· cosh

(
φ
√

α2

c2J2 −1

)
−Eα . (3.52)

In this expression, we take the positive root for α > 0 and negative root
for α < 0. It is obvious that, as φ increases, (1/r) keeps increasing in the
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No, you can’t do
gravity this way;
wait till Chapter 11

case of attractive motion so that the test particle spirals to the origin! A
typical trajectory is shown in Figure 3.4.

This does not happen for the Kepler problem in Newtonian physics. As
is well known, the angular momentum term gives a repulsive J2/r2 con-
tribution to the effective potential in the central force problem. In the case
of −(1/r) potential, the angular momentum term prevents any particle
with non-zero J from reaching the origin. This is not the case in special
relativistic motion under attractive Coulomb field. If the angular momen-
tum is less than a critical value, α/c, then the particle spirals down to the
origin.

If we think of α as GMm, the second term in Eq. (3.46) gives a cor-
rection to the potential (−G2M2/2c2)(m/r2). This term will lead to a pre-
cession of ellipse but the model is totally wrong. One cannot represent
gravity using a vector potential; in such a theory, like charges repel while
the gravity has to be attractive. The proper way of generalizing the gravi-
tational Kepler problem, taking into account the effects of relativity, is of
course to use general relativity to describe the gravitational field. We will
discuss this in Chapter 11.



Inverse-square is
special in QM as
well!

No extra cost;
we anyway had
an �(�+1)/r2 in
the equation!

4The Importance of being
Inverse-square

We saw in Chapter 3 that the motion of a particle in the attractive (1/r)
potential has several peculiar features. This potential arises both in the
case of planetary motion (the Kepler problem) as well as in the study of
atomic systems like the hydrogen atom (the Coulomb problem). In this
chapter, we shall complement the classical discussion of Chapter 3 by
describing several peculiar quantum features [12] that arise in the study
of the inverse square law force.

We learnt in Chapter 3 that a simple way to understand the special
properties of the inverse square potential is to start with the potential given
by

U(r) =−α
r
+

β
r2 , (4.1)

and study the limit of β → 0. To study quantum mechanics, we first need
to solve the Schrödinger equation for the potential in Eq. (4.1). It turns
out that this is indeed possible and the analysis proceeds exactly as in the
case of normal hydrogen atom problem. Once the angular dependence is
separated out using the standard spherical harmonics Y�m(θ ,φ), the radial
part of the wavefunction R(r) will satisfy the differential equation

R′′+
2
r

R′+
2m
h̄2

{
E − h̄2

2mr2 �(�+1)− β
r2 +

α
r

}
R = 0 , (4.2)

where the prime denotes derivative with respect r and E(< 0) is the energy
eigenvalue. Let us introduce a new variable ρ by ρ = 2(−2mE)1/2r/h̄ and
two new constants s and n by

s(s+1)≡ 2mβ
h̄2 + �(�+1); n ≡ α

h̄

(
m

−2E

)1/2

. (4.3)

(The � = 0,1,2, ... is the eigenvalue of the angular momentum operator
while s is just a parameter; in general, it will not be an integer.) The radial
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Energy levels
depend on �,
if β �= 0 ...

... but independent
of � when β = 0

Runge-Lenz trick
works in QM too!

equation can be rewritten as:

d2R
dρ2 +

2
ρ

dR
dρ

+

(
−1

4
+

n
ρ
− s(s+1)

ρ2

)
R = 0 . (4.4)

This is identical to the standard radial equation for the hydrogen atom
which, actually, is to be expected. Algebraically, this arises because the
angular momentum term always has a r−2 dependence and the β/r2 part
of the potential just combines with the angular momentum term as shown
in the first equation in Eq. (4.3).

The quantization condition for energy levels now follows in a straight-
forward manner (as in the case of usual hydrogen atom) and you will find
that p ≡ (n− s− 1) must be a positive integer or zero for well-behaved
solutions to exist. (The s is taken to be the positive root of the quadratic
equation in Eq. (4.3).) This allows us to obtain the energy levels to be

−E =
2α2m

h̄2

{
2p+1+

[
(2�+1)2 +

8mβ
h̄2

]1/2
}−2

. (4.5)

It is now clear that the nature of energy levels depends rather crucially on
whether β = 0 or β �= 0. When β �= 0 we find that the energy levels depend
both on p and �. That is, if we keep p fixed and change �, the energy
of the state changes because it depends on both the quantum numbers.
On the other hand, when β = 0, Eq. (4.3) tells us that s = �. Therefore,
p ≡ (n− s− 1) = (n− �− 1) and the factor inside the curly bracket in
Eq. (4.5) reduces to

(2n−2�−2)+1+(2�+1) = 2n . (4.6)

In this limit, the energy depends only on the principle quantum number
n and becomes independent of the angular quantum number �. The states
with same n and different � become degenerate which is the origin of
the phrase “accidental degeneracy of the Coulomb potential”. (In a way,
this is similar to the classical orbits closing in the case of β = 0.) As I
said before, starting from the potential in Eq. (4.1), solving the problem
completely and then taking the limit of β → 0 helps us to distinguish such
“accidental” results from more generic results.

In the classical Coulomb problem, we could find the orbit purely alge-
braically using the Runge-Lenz vector without solving a differential equa-
tion. Can we do something similar in the case of quantum mechanics? Can
we find the energy levels of the hydrogen atom without explicitly solving
the Schrödinger equation? It turns out that this is indeed possible as was
first shown by Pauli in 1926. The operator algebra which is involved is
straightforward but lengthy and hence I will just indicate the key steps.
(One good place to look up the details of the algebra is Ref. [13].)
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Correct definition
of AAA in QM

Quantum analogues
of classical results,
almost

We now switch to the β = 0 (viz., the standard Coulomb problem) and
define an operator MMM = AAA/m corresponding to the classical Runge-Lenz
vector (divided by m for convenience). Classically, in the definition of the
Runge-Lenz vector, we could have used either ppp× JJJ or −JJJ × ppp because
ppp× JJJ = −JJJ × ppp. But this is not true in quantum mechanics because of
the non-trivial commutation relations. Hence the appropriate operator —
which will be Hermitian — needs to be defined as

MMM =
1

2m
(ppp× JJJ− JJJ× ppp)−α

rrr
r
, (4.7)

where each term is now an operator. By explicit computation, you can
verify that the following identities are satisfied:

[MMM,H] = 0; JJJ ·MMM = MMM · JJJ (4.8)

and
M2 = α2 +

2H
m

(h̄2 + J2) , (4.9)

where H is the Hamiltonian. You can now recognize the correspondence
between the operator relation in Eq. (4.8) and the classical properties of
the Runge-Lenz vector given by Eq. (3.17). The relation in Eq. (4.9), how-
ever, is a bit non-trivial because it has an additional h̄2 term which is
purely quantum mechanical and arises because of the non-commuting na-
ture of the operators. Further, we have three commutation rules which can
all be directly obtained from the definitions:

[Ji,Jj] = ih̄εi jkJk;
[Mi,Jj] = ih̄εi jkMk; (4.10)
[Mi,Mj] =−2i(h̄/m)Hεi jkJk .

The first one is well-known, of course; the second reflects the fact that the
components of MMM behave as a vector under spatial rotations. The really
non-trivial one is the third commutation rule which — by a series of ma-
nipulations — allows us to deduce the eigenvalues of H. I will now outline
this procedure.

We first note that, since H,MMM,JJJ are conserved quantities (in the sense
that they all commute with the Hamiltonian), we can confine ourselves to
a sub-space of a Hilbert space that corresponds to a particular eigenvalue
E(< 0) of the Hamiltonian H. Working in this subspace, we can replace
H by its eigenvalue in the third commutation relation in Eq. (4.10). We
then rescale MMM by MMM′ ≡ (−m/2E)1/2MMM so that the last two commutation
relations in Eq. (4.10) can be expressed in the form[

M′
i ,Jj

]
= ih̄εi jkM′

k;
[
M′

i ,M
′
j
]
= ih̄εi jkJk , (4.11)
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A trick worth
learning

We now have two
sets of angular
momentum
operators!

No solving
differential
equations!

The reason it works

A cute trick

showing that they constitute a closed set. This set can be separated by
defining two other operators III = (1/2)(JJJ+MMM′),KKK = (1/2)(JJJ−MMM′) which
will satisfy the commutation relations:

[Ii, I j] = ih̄εi jkIk; [Ki,Kj] = ih̄εi jkKk , (4.12)

with other commutators vanishing. From our knowledge of the angular
momentum operators, we know that the spectra of I2 and K2 are given by
j( j+1)h̄2,k(k+1)h̄2 where ( j,k) = 0,1/2,1..... But since I and K obey
the additional constraints:

I2 −K2 = JJJ ·MMM = 0 , (4.13)

we only need to consider the subspace with j = k. Then the operator

1
2
(J2 +M′2) =

1
2
[
(III +++KKK)2 +(III −−−KKK)2]= I2 +K2 , (4.14)

will have the eigenvalues [ j( j+ 1)+ k(k+ 1)]h̄2 = 2k(k+ 1)h̄2 (because
j = k) with k = 0,1/2,1, · · · . On the other hand, we also have

1
2
(J2 +M′2) =

1
2

[
J2 − m

2E
M2
]
=−mα2

4E
− 1

2
h̄2 , (4.15)

where the last relation arises from Eq. (4.9). Using the eigenvalues of the
operator in Eq. (4.14), we see that E is quantized in the form:

E =− mα2

2h̄2(2k+1)2
, (4.16)

which is the standard result. So, once again, the existence of an extra con-
served quantity allows us to solve the problem completely.

The physical meaning of the above steps relies on the commutation
relations in Eq. (4.12) and the constraint I2 = K2. You can think of
the commutation relation in Eq. (4.12) as describing rotations in two
different planes in a hypothetical 4-dimensional space with coordinates
(q1,q2,q3,q4). In other words, the hydrogen atom problem seems to ex-
hibit rotational invariance in a hypothetical 4-dimensional space! In fact,
the situation is better than that. You can map the Hamiltonian of the
3-dimensional hydrogen atom to that of a 4-dimensional isotropic har-
monic oscillator with an extra restriction which comes from the condition
I2 = K2. I will now describe how this comes about. Since this mapping is
somewhat complicated mathematically, we will do this in steps.

Let us begin with the Hamilton-Jacobi equation for the central force
and consider the radial part of the action which obeys Eq. (3.40). When
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V (r) = Ark, this equation reads as:

(
dF
dr

)2

≡ p2
r ≡ 2m

(
E −Ark − J2

2mr2

)
. (4.17)

Suppose we now change variables from r to s such that r = sn. Elementary
algebra now leads to a modified form of Eq. (4.17) given by

(
dF
ds

)2

= 2mn2
(

Es2n−2 −Asn(k+2)−2 − J2

2ms2

)
. (4.18)

You now notice that if we rescale J by Jn, the last term in Eq. (4.18) has
the same structure as the last term in Eq. (4.17) (with s treated as a radial
coordinate) and represents the contribution due to the angular momentum.
As regards the other two terms in Eq. (4.18), we would like one of them
to be a constant representing the energy, say, E of the system while the
other term should represent some central potential, say, V (s). When n = 1
and r = s — which is the original system — the first term in Eq. (4.18)
represents the energy, while the second term represents the potential. But
there is another possibility: If we choose n = 2/(2+ k), we can make the
second term in Eq. (4.18) a constant. For this choice, we will have

2n−2 =
4

2+ k
−2 =− 2k

2+ k
, (4.19)

and the first term in Eq. (4.18) will correspond to a potential which is
another power law. In that case, Eq. (4.18) becomes

(
dF
ds

)2

= 2m
(

Ēs−2k/(k+2)− Ā− J̄2

2ms2

)
, (4.20)

where Ē = n2E, Ā = n2A, J̄ = nJ are rescaled parameters of the problem.
This represents the relevant equation for the radial action for another cen-
tral force problem (in the variable s) with energy E and potential V (s)
where

E =−Ā; V (s) =−Ēs−2k/(k+2) . (4.21)

Let us specialize now to the Coulomb problem with k =−1 and A=−Zq2

where q is the charge of the electron and Z is the atomic number. Let E =
−|E| be the negative energy corresponding to a bound state. In this case,
n = 2/(2+ k) = 2 and Eq. (4.19) gives [−2k/(2+ k)] = 2. We now see
from Eq. (4.21) that the original problem gets mapped to another central
force problem with

E =−Ā = 4Zq2; V (s) =−4Es2 = 4|E|s2 . (4.22)
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Voila!

The quantum case
in D dimensions

We have transformed the Coulomb problem to a harmonic oscillator! A
parameter describing the original potential 4Zq2 appears as the energy of
the oscillator and the original bound state energy appears as the squared
frequency of the oscillator.

The same idea works in quantum theory for the Coulomb problem in
D = 3, if the oscillator is in D = 4. To see this, let us consider an isotropic
harmonic oscillator in a hypothetical D−dimensional space with coordi-
nates (q1,q2, ....qD). Let us introduce in this space the standard radial co-
ordinate s with s2 = qiqi and (D−1) angular coordinates (θ1,θ2, ...θD−1).
(This is just a generalization of what we would have done in D = 3
in terms of one radial coordinate r and two angular coordinates θ and
φ .) The Hamiltonian for a quantum isotropic oscillator will be the sum
of kinetic and potential energy terms where the potential energy is just
V (s) = (1/2)mΩ 2s2, where m is the mass of the particle and Ω is the an-
gular frequency of the oscillator. The quantum mechanical operator for the
kinetic energy part p̂pp2/2m = −(h̄2/2m)∇2

(D) — where ∇2
(D) is the Lapla-

cian in D dimensions — can be separated into a radial part involving p̂pp2
s

and an angular part having the form L̂LL
2
/s2 where L̂LL

2
is the Laplacian on

the (D− 1) sphere defined by s = constant. (This is again in complete
analogy with what we do in D = 3. There, we would have separated the
radial and angular parts of the Laplacian ∇2 in exactly the same way.) The
relevant Schrödinger equation will now read as:{

1
2m

[
p̂2

s +
L̂2

s2

]
+

1
2

mΩ 2s2 −Eosc

}
Ψ = 0 , (4.23)

where Eosc is the energy eigenvalue of the D = 4 oscillator.

Let us separate out the angular and radial parts of the wavefunction
Ψ as Ψ(s,θi) = R(s)Φ(θi) with L̂LL

2Φ = L2Φ where L2 is the relevant
eigenvalue of the angular Laplacian. Concentrating on the radial equation,
we will play the old trick and introduce the variable ρ ≡ s2 and divide
Eq. (4.23) throughout by ρ . This leads to the equation{

1
2m

[
p̂2

s

ρ
+

L2

ρ

]
− Eosc

ρ
+

1
2

mΩ 2
}

R = 0 . (4.24)

If you compare Eq. (4.23) and Eq. (4.24), you see that the situation is now
identical to what happened in the classical case. In Eq. (4.24), we have the
angular momentum term L2/ρ2 intact; the term (1/2)mΩ 2 is a constant
and plays the role of energy eigenvalue while the other term (−E/ρ) is
the Coulomb potential in the new radial coordinate! Everything will be
fine provided the term p̂pp2

s/ρ reduces to the standard Laplacian in D = 3
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Why D= 4 is special
to this problem

The only problem
physicists can
solve is harmonic
oscillator!

in the ρ coordinate. If we put d ≡ (D− 1), the term p̂pp2
s/ρ expands out

to

1
ρ

1
sd

∂
∂ s

(
sd ∂
∂ s

)
=

1
ρ

1
ρd/2 2

√
ρ

∂
∂ρ

(
ρd/22

√
ρ

∂
∂ρ

)

= 4
1

ρ(d+1)/2

∂
∂ρ

(
ρ(d+1)/2 ∂

∂ρ

)
. (4.25)

In order for this operator to reduce to the standard Laplacian in D = 3,
viz., ρ−2∂ρ(ρ2∂ρ) we need the condition (1/2)(d + 1) = 2. This gives
d = 3 or D = 4.

Thus, we can map the problem of quantum isotropic oscillator in D= 4
to the Coulomb problem in D = 3. The mapping also tells you that the
bound state energy of the Coulomb system is given by
Ecoul = −(1/2)mΩ 2, while the parameter in the Coulomb potential
V (ρ) = −Zq2/ρ is given by Zq2 = Eosc. The energy eigenvalue for the
oscillator Eosc is given by Eosc = h̄Ω f where f gives the quantization con-
dition for the oscillator energy levels. (For a D = 1 oscillator, this is just
n+(1/2) but for D = 4 it is more complicated. We will comment on it
later on.) Combining these two results, we find that

Ecoul = −1
2

mΩ 2 =−1
2

m
(

Eosc

h̄ f

)2

= −1
2

m
(

Zq2

h̄ f

)2

=−mZ2q4

2h̄2 f 2
. (4.26)

This allows us to find the energy eigenstates of Coulomb/Kepler problem
in D = 3 from the energy eigenstates of the isotropic oscillator in D = 4.
To fix f we need to deal with the angular part of the Hamiltonian with
some more care (which we will discuss below) and this leads to the result
that f = fn1n2� = (n1 +n2 + |�|+1) where n1,n2 range over 0,1,2, ... and
�= 0,±1,±2, ..... This clearly reproduces the standard hydrogen spectra.

After all this warm up, let me show you how to model this problem
rigorously [14, 15]. Since we know that the isotropic harmonic oscillator
in D = 4 allows us to solve the problem, let us begin with a hypothetical
4-dimensional space with the coordinates (q1,q2,q3,q4). We could intro-
duce one radial and three angular coordinates, instead of the Cartesian
coordinates qi, in many different ways in this space. Our aim is to intro-
duce three angular coordinates θ ,φ and χ such that (θ ,φ) can be mapped
to the standard spherical polar angles in a D = 3 subspace. This requires
a special coordinatization of the D = 4 space which is best done as fol-
lows. Pairing up the Cartesian coordinates as (q1,q2) and (q3,q4), we can
introduce two complex coordinates z1 = q1 + iq2 and z2 = q3 + iq4. We
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Special coordinates
in D = 4

The oscillator
Hamiltonian in
these coordinates

will now introduce the radial coordinate s and three angles (θ ,φ ,χ) by
the relations

z1 = q1 + iq2 ≡ scos
θ
2

exp
i
2
(χ−φ)≡ uexp

i
2
(χ−φ);

z2 = q3 + iq4 ≡ ssin
θ
2

exp
i
2
(χ+φ)≡ vexp

i
2
(χ+φ) . (4.27)

The last equalities define the variables u,v which turns out to be con-
venient in calculations. There is a natural mapping from the complex
numbers (z1,z2) to the standard 3-dimensional Cartesian coordinates xxx =
(x,y,z). Treating z1 and z2 as the components of a column vector, this
relation is given by

xxx = z†σσσz , (4.28)

where σσσ are the standard Pauli matrices. If you use the explicit form of
the Pauli matrices, you will find that these relations reduce to

x = z∗1z2 + z1z∗2 = 2uvcosφ = s2 sinθ cosφ ;
y = i(z1z∗2 − z∗1z2) = iuv(e−iφ − eiφ ) = s2 sinθ sinφ ;
z = s2 cosθ . (4.29)

This tells you that if we set ρ = s2 (which we know works very well), then
(ρ,θ ,φ) is the standard spherical polar coordinates in D = 3.

Our next job is to write down the correct Hamiltonian for the isotropic
oscillator in D = 4 using the coordinates (s,θ ,φ ,χ). To begin with, the
metric in the 4-dimensional space, in terms of our prefered coordinates,
can be easily calculated to be

dl2 = |dz1|2 + |dz2|2 = du2 +dv2 +
1
4

s2(dφ 2 +dχ2)+
s2

2
cosθdχdφ

= ds2 +
s2

4
(
dθ 2 +dφ 2 +dχ2)+ s2

2
cosθdχdφ

= ds2 +
s2

4
(
dθ 2 + sin2 θdφ 2)+ s2

4
(dχ+ cosθdφ)2 . (4.30)

Therefore the kinetic energy of the particle in the 4-dimensional space is
given by

T =
1
2

m�̇��
2
=

1
2

m
[

ṡ2 +
s2

4
(
θ̇ 2 + sin2 θφ̇ 2)+ s2

4
(
χ̇+ cosθφ̇

)2
]
. (4.31)

Computing the momenta conjugate to the coordinates s,θ ,φ ,χ , we can
obtain the Hamiltonian for the free particle to be

Hfree =
p2

s

2m
+

2p2
θ

ms2 +
2

ms2
(pφ − cosθ pχ)2

sin2 θ
+

2p2
χ

ms2 . (4.32)
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The trouble: an
extra angle!

We are ultimately interested in reducing the problem to one in D = 3 with
the momenta (ps, pθ , pφ ). With this motivation, we re-write the above ex-
pression, after a little bit of algebra, in the form:

Hfree =
p2

s

2m
+

2
ms2

(
p2
θ +

p2
φ

sin2 θ

)
+

2
ms2 sin2 θ

pχ(pχ −2cosθ pφ ) ,

(4.33)
where the first two terms have the standard form familiar to us in
D= 3. The Hamiltonian for the 4-D oscillator is obtained by adding to
this the potential energy term (1/2)mΩ 2s2. The explicit form of the oper-
ator version of this Hamiltonian will, therefore, be given by:

Hosc =
1

2m

[
p̂2

s +
4
s2 L̂2

std +
4

s2 sin2 θ

(
∂
∂χ

−2cosθ
∂
∂φ

)
∂
∂χ

]
+

1
2

mΩ 2s2 ,

(4.34)

where L̂2
std is the standard angular Laplacian on the 2-sphere and p̂2

s is the
radial part of the Laplacian.

The solution to ĤoscΨ = EoscΨ will now lead to the eigenfunction
Ψ(s,θ ,φ ,χ) which depends on all the three angles. But we know from
Eq. (4.29) that the D= 3 coordinates do not involve the angle χ . Therefore
we shall look at the subspace of the solutions to the equation
ĤoscΨ =EoscΨ in whichΨ is independent of χ and satisfies the constraint
∂Ψ/∂χ = 0. We see that this reduces the Hamiltonian in Eq. (4.34) to the
one appearing in Eq. (4.23), except for a rescaling of the angular momen-
tum operator by factor 4, which is of no consequence for our purpose.
Rest of the analysis can now proceed exactly as we did before in the case
of Eq. (4.23).

The condition ∂Ψ/∂χ = 0 translates into the requirement that the ro-
tations in the relevant planes of the 4-dimensional space do not change
the wavefunction. The angular momentum operator in the q1−q2 plane is
given by (q1∂2 − q2∂1) while the angular momentum operator in q3 − q4
plane is given by (q3∂4 − q4∂3). If we arrange the eigenvalues of these
two operators to be equal in magnitude but opposite in signs, then we can
ensure that the wavefunctions are indeed independent of the unwanted
angle. So we impose the following extra condition on the 4-dimensional
wavefunction:

(q1∂2 −q2∂1)Ψ =−(q3∂4 −q4∂3)Ψ . (4.35)

This condition also allows us to separate the wavefunction in the 4-dimen-
sional space to the product of two 2-dimensional oscillators in the form
Ψ =ΨA(q1,q2)ΨB(q3,q4) with

[
h̄2

2m
(∂ 2

1 +∂ 2
2 )+λA − 1

2
mΩ 2(q2

1 +q2
2)

]
ΨA = 0 , (4.36)
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Hydrogen atom in
3D = Oscillator in
4D!

Connecting up with
the Runge-Lenz
approach

Coulomb scattering
is strange, too!

and a similar equation forΨB with eigenvalue λB. The solutions to the 2-
dimensional isotropic oscillator are well known. If we take the eigenvalue
of the angular momentum to be �1 then the energy eigenvalues are given
by

εA(n1, �1) = h̄Ω(2n1 + |�1|+1) =
h̄2λA(n1, �1)

2m
, (4.37)

and similarly for the second oscillator. But the condition in Eq. (4.35)
requires us to choose �1 =−�2 = �, (say), so that the final solution can be
written in the form

Ψn1,n2,� =ΨAn1,� (q1,q2)ΨBn2,−� (q3,q4) , (4.38)

with λ = λA +λB being:

λ (n1,n2, �) = 4Ω(n1 +n2 + |�|+1)≡ 4ΩN. (4.39)

This leads to the result in Eq. (4.26) with f = f (n1,n2, �) = (n1 + n2 +
|�|+1) where n1,n2 range over 0,1,2, ... and �= 0,±1,±2, .....

In this approach, which maps the 3-D hydrogen atom to a 4-D isotropic
oscillator, it is obvious that our system has rotational invariance in 4-
dimensional space. The physical solutions, however, are restricted to those
satisfying the constraint Eq. (4.35) so that the third angle does not come
into the picture. This constraint is closely related to the constraint I2 = K2

which we had in the operator approach; in fact, Ii and Ki can be thought as
the angular momentum operators on the relevant planes. Finally, straight-
forward computation will show that the wavefunctions in Eq. (4.38) are
also eigenfunctions of the z−component of the Runge-Lenz vector MMM and
satisfies the relation

MzΨn1,n2� =

[
zq2(n2 −n1)

N

]
Ψn1,n2� . (4.40)

So we have simultaneously diagonalized all the relevant conserved quan-
tities in the approach.

So far, we have been concerned with the bound state problem in the
Coulomb potential. The (1/r) potential introduces some conundrums in
the case of scattering as well. We will conclude this chapter with a brief
description of some of these issues.

Let us start by recalling the usual formalism of quantum mechanical
scattering theory. The time independent Schrödinger equation in a poten-
tial V (rrr) can be expressed in the form

(∇2 + k2
0)ψ(rrr) =U(rrr)ψ(rrr)≡ f (rrr) , (4.41)
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Simple logic gets
you the Green’s
function!

The Born
approximation

where
2m
h̄2 E = k2

0;
2m
h̄2 V ≡U . (4.42)

The formal solution to Eq. (4.41) will be

ψ(rrr) = ψ0(rrr)+(∇2 + k2
0)

−1 f (rrr) = ψ0(rrr)+
∫

d3rrr′ f (rrr′)G(rrr−−− rrr′) ,
(4.43)

where we interpret ψ0(rrr) as an incident wave propagating towards the
scattering potential and the rest (which vanishes when V = 0) as the scat-
tered wave. The second equality defines the Green function for the prob-
lem which satisfies the equation (∇2 + k2

0)G(rrr) = δD(rrr). Textbooks con-
tain several formal procedures to solve this equation for the Green func-
tion but it can be done by inspection and a bit of English! We first note
that everywhere except the origin, the right hand side vanishes and we
have (∇2 + k2

0)G(rrr) = 0; since we want an outgoing wave as the solu-
tion for a point source, we must have G(r) ∝ eik0r/r. All we need to do
is to fix the proportionality constant. Near the origin you can ignore the
k2

0 term and equation reduces to ∇2G = δD(rrr). This is just the Poisson
equation for a point particle at the origin and we know that its solution is
G =−(1/4π)(1/r) which should be the behaviour of the Green function
near origin. This fixes the proportionality constant as −(1/4π) and we get
the Green function to be

G(rrr) =− 1
4π

eik0r

r
. (4.44)

If we substitute Eq. (4.44) into Eq. (4.43) we will get an integral equa-
tion for ψ because the f on the right hand side depends on ψ . One way
to solve this equation is to work perturbatively, order-by-order in the po-
tential V . To the lowest order, we plug in ψ0(rrr) — which we can take
to be an incident plane wave exp(ikkk0 · rrr) representing an incident particle
with momentum h̄kkk0. Doing this and assuming that we can approximate
|rrr− rrr′|−1 ≈ (1/r), we can easily show that the first order solution ψ1 is
given by

ψ1(rrr) =− 1
4π

eik0r

r
Ũ(qqq) =− 1

2π
m
h̄2 Ṽ (qqq)

eik0r

r
. (4.45)

Here, Ũ(qqq) and Ṽ (qqq) are the three dimensional Fourier transforms of U(rrr)
and V (rrr) evaluated on the momentum transfer qqq ≡ kkk0−k0r̂rr ≡ kkki−kkk f with
r̂rr being the unit vector in the direction of rrr. In the second equality, we have
indicated the initial and final momentum vectors of the scattered particles
as h̄kkki and h̄kkk f respectively. Thus the Fourier transform of the scattering
potential determines the lowest order correction due to scattering.
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The scattering
cross-section

Familiar, but
deceptive

Puzzle 1:
Where is h̄?

In the case of spherically symmetric potential, the coefficient of eik0r/r
can depend only on the scattering angle θ between kkki and kkk f . If we com-
pute the current jjj ≡ (h̄/m)Im ψ∗∇ψ for the outgoing wave, we find its
magnitude to be

jout =
| f (θ)|2

r2 v0 =
| f (θ)|2

r2 jin , (4.46)

since jin ≡ v0 ≡ h̄k0/m. The number of particles scattered into a solid
angle dΩ is given by

dN = joutr2dΩ = v0| f (θ)|2dΩ ≡ jin
dσ
dΩ

dΩ , (4.47)

where the last equation defines the differential scattering cross section
(dσ/dΩ). We thus get our final result for the scattering cross section in
the lowest order approximation to be

dσ
dΩ

= | f (θ)|2 = 1
4π2

m2

h̄4 |Ṽ (θ)|2 . (4.48)

Let us go ahead and apply it to the Coulomb potential (which happens
to be an illegal procedure on which we shall comment upon later). Using
the fact that the Fourier transform of V (rrr) = Ze2/r is Ṽ (kkk) = 4πZe2/k2

and the result

(kkki − kkk f )
2 = 2k2

0(1− cosθ) = 4k2
0 sin2

(
θ
2

)
, (4.49)

we find that the differential cross section for the scattering in the Coulomb
field is given by (

dσ
dΩ

)
=

Z2e4

(4E)2 cosec4
(
θ
2

)
, (4.50)

with a characteristic cosec4(θ/2) dependence. This is a very standard
result (called Rutherford scattering cross section) and is, of course, de-
scribed in every text book.

But, there are a couple of things which are quite strange about this re-
sult and deserve attention. First, you notice that the result is independent
of h̄. That is a bit strange since we are supposed to be doing quantum
mechanics! The cross section we have found is exactly what you get do-
ing everything purely classically with no wavefunctions, no Schrödinger
equations and a la Rutherford. It is pretty nice for Rutherford, who got a
quantum result by classical analysis, but it is strange.

Second, the scattering problem in Coulomb potential corresponds to
solving the Schrödinger equation with E > 0. Although rather messy,
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Puzzle 2:
How can Born
approximation give
the exact result?

Once again,
inverse-square
is special!

A strange, but
calculable, result

these solutions are known and have the asymptotic form given by

ψ(r) ∼
[

1− γ2

ik(r− z)

]
exp [ikz+ iγ logk(r− z)] (4.51)

−Γ (1+ iγ)
Γ (1− iγ)

(
γcosec2 θ

2

)
1
kr

exp [ikr− iγ logk(r− z)] ,

where γ = Ze2/4π h̄v, k = mv/h̄ and θ is the scattering angle. The first
thing we notice is that the asymptotic forms of the wave are not of the
form eikr/r. This distortion of the phase is due to the long range nature
of the Coulomb field which means that everything we did above is illegal
for Coulomb scattering! Next we see that one can still read off an f (θ)
from the second term in Eq. (4.51). If we compute | f (θ)|2 we find that we
again get the Rutherford scattering cross section. This is quite incredible
because the calculation that led to Eq. (4.50) was supposed to be valid
only to the first order perturbation theory. In writing Eq. (4.45) we did
introduce an approximation, usually called the Born approximation. How
come Born approximation leads to the exact result for the scattering cross
section? What do all the higher order (“unBorn”) terms contribute?

The answer to the first puzzle is relatively simple but the second one
is more involved. We can understand why there is no h̄ in the final re-
sult by the following scaling argument. If V (r)∼ rn then Ṽ (k)∼ k−(3+n).
Therefore,

| f |2 ∼ 1
h̄4 k−2(3+n) ∼ 1

h̄4
h̄2(n+3)

(h̄k)2(n+3) ∼
1

E(n+3) h̄2n+2 , (4.52)

leading to (
dσ
dΩ

)
∝

h̄2(n+1)

E(n+3) . (4.53)

Once again we see the special status enjoyed by the Coulomb potential
with n =−1. This is the only power law potential for which the scattering
cross section is independent of h̄ just because of dimensional reasons.

To understand the second issue, we actually need to compute the higher
order terms beyond Born approximation and see what they do. This has
been done in the literature (see, for example, Ref. [16]). To do things in a
well defined manner, one can calculate the scattering cross section order-
by-order for a screened Coulomb potential of the form e−λ r/r and then
take the limit of λ → 0. Such a calculation shows that all the higher or-
der terms only change the phase of the outgoing scattered wave leaving
| f (θ)|2 invariant. Unfortunately, no one knows a simple reason as to why
this happens — which makes it an interesting question for further explo-
ration.



Incredible, but true!

Question, made
precise

5Potential surprises in
Newtonian Gravity

Consider a planet which has a weird shape, resembling, say, that of a
diseased potato. Is it possible that the gravitational force exerted by this
planet — which is distinctly non-spherical in shape — falls exactly as r−2

everywhere outside of it? The initial reaction of many physicists will be:
“No, of course, not; you need a spherically symmetric distribution of mass
to produce a 1/r2 force outside it”. Surprisingly, this is not true. You can
construct totally weird mass distributions which exert an inverse square
law force on the outside world.

To begin with, let me assure you that there is no cheating involved
here. We are not talking about the gravitational field far away from the
body which falls approximately as 1/r2. The result should be exact and
must hold everywhere outside the the body, right from its surface. You
also need not worry about things like viewing a spherically symmetric
distribution in a strange coordinate system etc.. We are thinking of stan-
dard Cartesian coordinates with concepts like spherical symmetry having
the usual meaning.

To understand the implications of the question, we start by reviewing
some basics of Newtonian gravity. The Newtonian gravitational field FFF
can be expressed as the gradient of a potential φ which satisfies Poisson
equation. We have

∇2φ = 4πGρ; FFF =−∇φ , (5.1)

where ρ(xxx) is the matter density which is assumed to be either positive
or zero everywhere. (For our purpose, it is adequate to consider static
configurations.) In these mathematical terms our problem translates to the
question: Can you find a density distribution ρ(xxx) which is not spherically
symmetric (in some chosen coordinate system) and vanishes outside some
compact region R around the origin, such that outside R the potential φ
falls as 1/r? Of course, any spherically symmetric ρ(xxx) will produce such
a potential, but must it be spherically symmetric?
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More general
question

Virtues of
superposition

Zero-gravity is easy,
when you have
constant gravity

A little thought will convince you that there is no simple way of going
about analyzing this problem. Usually, we are given some ρ(xxx) and asked
to find the φ(xxx). We are now interested in the inverse question, which — in
a broader context — is the following: If we know the gravitational force in
some region of space how unique is the density distribution producing that
force? (Some of these issues are discussed in classical, geometrical style
in older books on potential theory, like e.g., Refs. [17, 18]; also see [19].)

Let me give you some instances in which totally different density dis-
tributions produce the same gravitational field in some region. This will
be a good warm up for the original question we want to attack.

One example, well-explored in standard text books, is the field pro-
duced by an infinite, plane sheet of matter of surface mass density σ .
You might not have learnt it in the context of gravity, but I am sure you
have encountered it in some electrostatics course. You will remember that
such infinite planes with constant surface density produce a gravitational
force FFF = −2πGσ n̂nn which is constant everywhere and directed towards
the sheet. (Here, n̂nn is the unit vector in the direction perpendicular to the
sheet.) We now ask: Is it possible to come up with a density distribution
which is not plane-symmetric but will produce constant gravitational field
in some compact region of space S ? The answer is “yes”; and some of
you must have even worked it out without quite realizing its importance!

The configuration is shown in Fig 5.1. Consider a sphere, of radius R
and constant density ρ , centered at the origin of the coordinate system.
Inside it we carve out another spherical region of radius L centered at
the point ���. Consider the force on a particle located within the cavity at
the position (���+ rrr). The force due to a constant density sphere is FFF =
−(4/3)πGρxxx (so that −∇.FFF = 4πGρ). Hence, the force we want is

FFF = FFFsph −FFFhole =−4
3
πGρ [���+++ rrr]+

4
3
πGρrrr =−4π

3
Gρ��� , (5.2)

where FFFhole is the force the matter in cavity would have exerted if it were
not empty. This FFF is clearly a constant inside the hole! Thus a spherical
hole (located off-center) inside a sphere is a region with constant gravita-
tional force!

Suppose you measure the gravitational field in some finite region S
and find it to be strictly constant. Can you say anything about the mass
distribution which is producing this force? Of course not. It could have
been produced by an infinite plane sheet or a hole-in-a-sphere; these are
just two of infinitely many possibilities. Most of these mass distributions,
which produce a constant gravitational field, will not have any specific
symmetry.

We can twist around the hole-in-the-sphere example to lead to another
interesting conclusion. You must have learnt, while studying Newtonian
gravity, that a spherical shell of matter exerts no gravitational force on
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R

L r

Fig. 5.1: An example of a highly asymmetric density distribution leading to a constant
gravitational force in a compact region of space. We scoop out all matter from a spher-
ical region of radius L located inside a constant density distribution which originally
made a sphere of radius R. It is easy to show that everywhere inside the spherical hole
the gravitational force is a constant and is in the direction along the vector joining the
centers of the two spheres.

Sources and fields
need not share the
same symmetry in
finite regions

a particle inside it. (This is just a special case of Eq. (5.2) above; when
��� = 0, the force vanishes.) Is it possible to come up with a completely
asymmetric distribution of matter which exerts zero gravitational force in
some region?

It turns out that the answer is again ‘yes’ and all you need to do is the
following: Suppose you make two hole-in-the-sphere distributions with
different values for the parameters — one with density ρ1, radius R1, hole
radius L1 and the center of the hole located at ���1 with respect to the center
of the sphere; the second one has density ρ2, radius R2 etc. We superpose
the spheres such that: (i) ���1 and ���2 are in the opposite directions; (ii)ρ1�1 =
ρ2�2; and (iii) part of the spherical cavities overlap. The resulting density
distribution is clearly not spherically symmetric. But in the region of the
cavity which is common to the holes of both spheres, the gravitational
force is strictly zero. This is because each sphere produces an equal and
opposite force in the cavity when ρ1�1 = ρ2�2.

The moral of the story is worth remembering. Just knowing the sym-
metries of the gravitational force in some region alone does not allow you
to conclude anything about the symmetries of the mass distribution. This
itself comes as a surprise for many physicists since we are so accustomed
to assuming the same symmetries for the field and its source. It is quite
possible to have completely asymmetric density distributions producing
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Actually you
already know this

Non-spherical
charge density
leading to 1/r2

electric field!

Poisson equation
under inversion
— a result worth
knowing

highly regular gravitational fields. We are now ready to tackle the ques-
tion we originally started with: Are there density distributions which are
not spherically symmetric but produce an inverse square force?

Let us begin by considering this problem in the case of electrostatics. Is
it possible to have a charge distribution which is not spherically symmet-
ric but produces an inverse square electric field? Incredibly enough, you
already know such a distribution from your regular electrostatics course!
Remember the problem of a point charge and a conducting sphere which
is solved by the method of images? We start with a conducting sphere of
radius a and a point charge Q located outside the sphere at a distance L
from the center of the sphere. The charge Q induces a surface charge dis-
tribution on the conducting sphere and the net electric field at any point is
the sum of the electric fields due to the surface charge distribution σ and
the point charge Q. This problem is solved by showing that it is equiva-
lent to that of two point charges: the real charge Q and an “image” charge
q = −(a/L)Q placed at a distance � = (a2/L) inside the sphere in the
line joining the center of the sphere to the charge Q. The fields outside
this sphere, produced by the point charges Q and q, are identical to those
due to the point charge Q and the charge distribution σ . It follows that
this charge distribution σ produces a field which is equivalent to that of a
point charge q! The explicit form of the charge distribution is given by

σ(r,θ) =− Q
4πr

(L2 − r2)

(L2 + r2 −2Lr cosθ)3/2 ; (at r = a) . (5.3)

Of course, this distribution σ is far from spherically symmetric since the
induced charge on the side nearer to Q will be distributed differently com-
pared to the induced charge on the farther side. We have thus come up with
a charge distribution which is not spherically symmetric but produces a
strict inverse square law force outside a finite region.

The main difference between electrostatics and gravity is that, in grav-
ity, the mass density has to be positive definite — while, in electrostatics,
the charge density need not be positive definite. In the above example, the
charge density has the same sign everywhere and hence one can simply re-
place it by mass density to get a solution appropriate for the gravitational
case.

If you are still shaking your head in disbelief, let me assure you that
everything is quite above board. It is quite possible to have such distri-
butions, and — in fact — there are infinitely many such configurations.
Those of you who are mathematically inclined might like the following
construction of some such distributions using a property of Poisson equa-
tion known as “inversion”. Inversion is a mathematical operation under
which you associate to any point xxx another point xxxinv ≡ (a2/x2)xxx where a
is the radius of the “inverting sphere”. From this definition it immediately
follows that points inside a sphere of radius a are mapped to points out-
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Fig. 5.2: Top left: Schematic picture showing the effect of inversion in which a given
point xxx is mapped to another point xxxinv ≡ (a2/x2)xxx. When the points in a surface of a
compact region A are inverted using the inverting sphere C , we obtain the surface A ′.
In this process, the region inside A gets mapped to region outside A ′ and vice versa.
Bottom right: Actual inversion of a black, shaded, oval shaped region by a sphere. The
inverted curve is shown with shaded region being mapped to the outside.

side and vice-versa. There is an interesting connection between inversion
and the solutions to the Poisson equation. Suppose φ [xxx;ρ(xxx)] is the grav-
itational potential at a point xxx due to a density distribution ρ(xxx). Consider
now a new density distribution ρ ′(xxx) = (a/x)5ρ(xxxinv) obtained by taking
the original density at the inverted point xxxinv ≡ (a2/x2)xxx and multiplying
by (a/x)5. We can show that the gravitational potential due to ρ ′(xxx) is
given by φ ′(xxx) = (a/x)φ(xxxinv). That is, the new gravitational potential at
any given point is the old gravitational potential at the inverted point xxxinv
multiplied by (a/x). (You will find the proof in the Appendix at the end
of this chapter.)

This result can be used to produce strange looking compact mass dis-
tributions with strictly inverse square law force. We begin with the result,
obtained earlier, that one can have very asymmetric density distributions
which can produce zero gravitational force inside an empty compact re-
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Turning it inside out

gion of space A . In figure 5.2, we assume that there are sources outside of
A (which are not shown) that produce a constant gravitational potential
inside the region of space A . The exact shape of this region is immaterial
for our discussion.

Let C be an imaginary spherical surface of radius a with center some-
where inside A . We now invert the surface of the region A using the in-
verting sphere C and obtain the surface A ′. In this process, the compact
region inside A gets mapped to an infinite, non-compact region outside
A ′. Since the region inside A was originally empty, the region outside
A ′ will be empty in the inverted configuration; all the sources which were
originally outside A are now mapped to the region inside A ′. Consider
now the gravitational potential outside A ′ due to this source ρ ′ which
is now inside A ′. This potential is obtained by taking the potential due
to the inverted point inside A and multiplying it by (a/x). But since the
potential everywhere inside A is a constant it follows that the potential
outside A ′ falls as |xxx|−1. We now have a region A ′ outside which the
gravitational force is strictly inverse square and the density distribution
producing this force is far from spherical!

Historically, this problem seems to have been first raised (and an-
swered) by Lord Kelvin. Newton, on the other hand, never worried about
this question. This is somewhat surprising since Newton had worried a
lot about the related problem, viz., whether a spherically symmetric mass
distribution will produce a force as though all its mass is concentrated at
the origin.

Appendix: In the text we used a result connecting the Newtonian gravita-
tional potential to its source when we perform an inversion. The proof of
this result is outlined here. A clever way to prove this result is to consider
the effect of conformal transformations of the Laplace equations which
is outlined in Ref. [20], page 151. A more elementary procedure, though
algebraically involved, is as follows.

Starting from the Poisson equation ∇2φ = 4πGρ relating the gravita-
tional potential φ to matter density ρ , we write down the solution:

−φ(xxx) = G
∫ ρ(rrr)

|xxx−−− rrr| d3rrr . (5.4)

We have the vector identity for any rrr,,, ��� which reads:

1
|rrr− (a2/�2)���| =

|���|
|rrr|

1
|(a2/r2)rrr− ���| . (5.5)

Identifying xxx with (a2/�2)��� we can write

−φ
(

a2

�2 ���

)
= G

∫ ρ(rrr)d3rrr
|rrr− (a2/�2)���| = G|���|

∫ ρ(rrr)/|rrr|
|(a2/r2)rrr− ���| d3rrr . (5.6)
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We transform the (dummy) integration variable rrr to RRR, with rrr = (a2/R2)RRR;
d3rrr = (a6/|R|6)d3RRR, getting:

−φ
(

a2

�2 ���

)
= G|���|

∫ a6

R6
R
a2

ρ
(
(a2/R2)RRR

)
|RRR−−− ���||| d3RRR

≡
(
�

a

)
G
∫ η(RRR)d3RRR

|RRR−−− ���| ≡ −|���|
a

u(���) , (5.7)

where u(���) is the potential due to η(xxx). That is, ∇2u = 4πGη . This gives
the relation between potential-density pairs of the form:

φ {xxx;ρ(xxx)}= a
|xxx|φ

{
a2

x2 xxx;
a5

x5 ρ
(
(a2/x2)xxx

)}
. (5.8)

Potential at xxx due to a distribution ρ(xxx) is the same as (a/|xxx|) times the
potential at (a2/x2)xxx due to a distribution (a5/x5)ρ

(
(a2/x2)xxx

)
. This is

the result we used in the text.
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6Lagrange and his Points

The idealized problem of a planet orbiting around the Sun has an exact
solution which — as we saw in Chapter 3 — is fairly easy to obtain.
But in real life, the orbital motion of planets is a lot more complicated
because each planet is influenced by the gravitational force of all other
bodies in the solar system. In fact, if we add just one more gravitating
body — thereby reaching the three-body problem, in which three point
particles are moving under the gravitational influence of one another —
the problem becomes analytically intractable.

When an exact problem cannot be solved, physicists attempt to solve a
simpler version of the problem, which will at least capture some features
of the original one. One such case corresponds to what is known as the
restricted three-body problem which could be described as follows. Con-
sider two particles of masses m1 and m2 which orbit around their common
center of mass exactly as in the case of the standard Kepler problem. We
now consider a third particle of mass m3, with m3 � m1 and m3 � m2, in
the gravitational field of the two particles m1 and m2. Since it is far less
massive than the other two particles, we will assume that it behaves like a
test particle and does not affect the original motion of m1 and m2. You can
see that this is equivalent to studying the motion of m3 in a time dependent
external gravitational potential produced by the masses m1 and m2. Given
the fact that we have lost both the time translation invariance and axial
symmetry, any hope for simple analytic solutions is misplaced. But there
is a special case for which a truly beautiful solution can be obtained.

This corresponds to a situation in which all the three particles maintain
their relative positions with respect to one another but rotate rigidly in
space with an angular velocity ω! In fact, the three particles are located at
the vertices of an equilateral triangle irrespective of the ratio of the masses
m1/m2. If you think about it, you will find that this solution, first found by
Lagrange, is not only elegant but also somewhat counter-intuitive. How
are the forces, which depend on mass ratios, balanced without adjusting
the distance ratios but always maintaining the equilateral configuration?
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Stable orbits around
potential maxima!

Rotate with the
masses

Putting the
Lagrangian
to good use

This is done
with foresight

What is more, the location of m3 happens to be at the local maximum of the
effective potential in the frame co-rotating with the system. Traditionally,
the maxima of a potential have a bad press due to their tendency to induce
instability. It turns out that, in this solution, stability can be maintained
(for a reasonable range of parameters) because of the existence of Coriolis
force — which is one of the concepts for which it is difficult to acquire an
intuitive grasp. I will now derive this solution and describe its properties
[21].

If the separation between the masses m1 and m2 is a, the Kepler so-
lution implies that they can rotate in circular orbits around the center of
mass with the angular velocity given by

ω2 =
G(m1 +m2)

a3 , (6.1)

where a is the distance between the particles. Since Lagrange has told us
that a rigidly rotating solution exists with the third body, we will study the
problem in the coordinate system co-rotating with the masses in which the
three bodies are at rest. We will first work out the equations of motion for
a particle in a rotating frame before proceeding further.

This is most easily done by starting from the Lagrangian for a particle
L(xxx, ẋxx) = (1/2)mẋxx2 −V (xxx) and transforming it to a rotating frame, by
using the transformation law vvvinertial = vvvrot+ωωω×xxx where ωωω is the angular
velocity of the rotating frame. Substituting into L leads to the Lagrangian
of the form

L =
1
2

mvvv2 +mvvv · (ωωω× xxx)+
1
2

m(ωωω× xxx)2 −V (xxx); vvv ≡ vvvrot , (6.2)

and the corresponding equations of motion will be:

m
dvvv
dt

=−∂V
∂xxx

+2mvvv×ωωω+mωωω× (xxx×ωωω) . (6.3)

We see that the transformation to a rotating frame introduces two ad-
ditional force terms in the right hand side of Eq. (6.3), of which, the
2m(vvv ×ωωω) is called the Coriolis force and mωωω × (xxx ×ωωω) is the more
familiar centrifugal force. The Coriolis force has a form identical to the
force exerted by a magnetic field (2m/q)ωωω on a particle of charge q. It
follows that this force cannot do any work on the particle since it is al-
ways orthogonal to the velocity. The centrifugal force, on the other hand,
can be obtained as the gradient of an effective potential which is the third
term on the right hand side of Eq. (6.2).

We can now find the solution to the rigidly rotating system, in which
all the three particles are at rest in the rotating frame in which Eq. (6.3)
holds. We will choose a coordinate system in which the test particle is at
the origin and denote by rrr1,rrr2 the position vectors of masses m1 and m2.
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The equilateral
triangle

Lagrange has five
points to make

The position of the center of mass of the m1 and m2 will be denoted by rrr,
so that:

(m1 +m2)rrr = m1rrr1 +m2rrr2 . (6.4)
For the solution we are looking for, all these three vectors are independent
of time in the rotating frame and the Coriolis force vanishes because vvv= 0.
Since the rotational motion of m1 and m2 is already taken care of (and they
are assumed to be oblivious to m3), we only need to satisfy the equation
of motion for m3. This demands:

Gm1

r3
1

rrr1 +
Gm2

r3
2

rrr2 = ω2rrr . (6.5)

You should now be able to see the equilateral triangle emerging. If we
assume r1 = r2, and take note of Eq. (6.4), the left hand side of Eq. (6.5)
can be reduced to (G/r3

1)(m1 +m2)rrr which is in the direction of rrr. If we
next set r1 = a, Eq. (6.5) is identically satisfied, thanks to Eq. (6.1). (The
cognoscenti would appreciate the algebraically clever trick of making the
location of the test particle as the origin.) This analysis shows how the
mass ratios go away through the proportionality of both sides to the radius
vector between the center of mass and the test particle.

To ensure that we obtain all the equilibrium solutions, we can do this
more formally. If we define the vector qqq by the relation m1rrr1 −m2rrr2 =
(m1 + m2)qqq, a little bit of algebraic manipulation allows us to write
Eq. (6.5) as:

G(m1 +m2)

2r3
1r3

2

[
(r3

1 + r3
2)rrr+(r3

2 − r3
1)qqq

]
=

G(m1 +m2)

a3 rrr . (6.6)

For this equation to hold, all the vectors appearing in it must be collinear.
One possibility is to have rrr and qqq to be in the same direction. It then
follows that rrr1,rrr2 and rrr are all collinear and the three particles are in
a straight line. The equilibrium condition can be maintained at three lo-
cations, usually called L1,L2 and L3. To work out the exact position of
equilibrium, one has to solve a fifth-order equation which will lead to
three real roots. We are, however, not interested in these, though L2 of the
Sun-Earth system has lots of practical applications.

If we do not want rrr and qqq to be parallel to each other, then the only
way to satisfy Eq. (6.6) is to make the coefficient of qqq vanish which re-
quires r1 = r2. Substituting back into Eq. (6.6), we find that each should
be equal to a. So we get the rigidly rotating equilateral configuration of
three masses with:

r1 = r2 = a . (6.7)
Obviously, there are two such configurations corresponding to the two
equilateral triangles we can draw with the line joining m1 and m2 as one
side. The locations of the m3 corresponding to these two solutions are
called L4 and L5, giving Lagrange a total of five points.
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Nature, of course,
knows this solution

Incidentally, there are several examples in the solar system where we
find nature using Lagrange’s insight. The most famous among them is the
collection of thousands of asteroids called the Trojans which are located
at the vertex of an equilateral triangle, the base of which is formed by the
Sun and Jupiter — the two largest gravitating bodies in the solar system.
(See Box 6.1.)

The existence of such real life solutions tells us that the equilateral
solution must be stable in the sense that if we displace m3 from the equi-
librium position L5 slightly, it should come back to it. (It turns out that the
other three points L1,L2,L3 are not stable, which is easy to prove.) Our
next task is to study this stability, for which a different coordinate sys-
tem is better [22]. We will now take the origin of the rotating coordinate
system to be at the location of the center of mass of m1 and m2 with the
x-axis passing through the two masses, and the motion confined to the x-y
plane.

Box 6.1: The Trojans (and the Greeks)

The solar system is replete with examples of nature making use of
the Lagrange points L4 and L5. The classic case is that of over 850
so called Trojan asteroids which form an equilateral triangle with the
Jupiter – Sun system. In addition, the Saturn – Sun system has a few,
the Mars – Sun system has two and the Neptune – Sun system has
about five. Due to various other perturbing effects, some of the “Tro-
jans” are expected to escape from the bound state within the age of
the solar system. So, occasionally, they pose a bit of theoretical puz-
zle in planetary dynamics.The Greeks and

the Trojans, up in
the sky The first Trojan asteroid of the Sun – Jupiter system was discovered

by Max Wolf in 1906 and named Achilles. The asteroids discovered
subsequently in Jupiter’s Lagrangian points were all given names as-
sociated with the heroes in the Iliad. Just to be fair to both sides in
the Trojan war, those at the L4 point are named after the Greek heroes
and those at the L5 point are named after the heroes of Troy. Unfortu-
nately, the first one discovered at the L5 point was called Patroclus (a
Greek) before the Greece-Troy rule was devised. Thus a Greek name
appears in the Trojan side; however, as though to compensate, Hector,
the Trojan hero appears in the Greek side (and is also the largest of
the Trojan asteroids). Except for these, the two sides are well segre-
gated. Right now the Greeks (4021) outnumber Trojans (2052) nearly
two-to-one! (The list of minor planets can be found at the website:
http://www.minorplanetcenter.org /iau /lists /JupiterTrojans.html)

http://www.minorplanetcenter.org /iau /lists /JupiterTrojans.html
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Such tricks are
worth learning.

Stability at the
maxima of the
potential?!

Another trick:
switching the
Coriolis force
on and off!

It will also help to rescale the variables to simplify life. Measuring
all the masses in terms of the total mass (m1 +m2), we can denote the
smaller mass by μ and the larger by (1− μ). Similarly, we will measure
all distances in terms of the separation a between the two primary masses
and choose the unit of time such that ω = 1. The position of m3 is (x,y)
while r1 and r2 will denote the (scalar) distances to m3 from the masses
(1− μ) and μ respectively (Note that these are not the distances to m3
from the origin.). It is now easy to see that the equations of motion, given
by Eq. (6.3), reduce to the set:

ẍ−2ẏ =−∂Φ
∂x

, ÿ+2ẋ =−∂Φ
∂y

, (6.8)

where

Φ =−1
2
(x2 + y2)− (1−μ)

r1
− μ

r2
(6.9)

is the effective potential in the rotating frame. The first term in Eq. (6.9)
gives rise to the centrifugal force while the other two terms are the stan-
dard gravitational potential energy. The only known integral of motion to
this equation is the rather obvious one corresponding to the energy func-
tion (1/2)v2+Φ = constant. A little thought shows that ∇Φ = 0 at L4 and
L5 confirming the existence of a stationary solution. To study the stability,
we normally would have checked whether these correspond to a maxima
or minima of the potential. As we can see from Fig. 6.1, the L4 and L5
actually correspond to maxima of Φ , so, if that is the whole story, L4 and
L5 should be unstable.

But, of course, that is not the whole story since we need to take into
account the Coriolis force term corresponding to (2ẏ,−2ẋ) in Eq. (6.8).
To see the effect of this term clearly, we will write the Coriolis force term
in Eq. (6.3), as (Cẏ,−Cẋ), so that the real problem corresponds to C = 2.
But this trick allows us to study the stability for any value of C, including
for C = 0, to see what happens if there is no Coriolis force. We now
have to do a Taylor series expansion of the terms in Eq. (6.8) in the form
x(t) = x0 +Δx(t), y(t) = y0 +Δy(t) where the point (x0,y0) corresponds
to the L5 point with y0 > 0. We also need to expand Φ up to quadratic
order in Δx and Δy to get the equations governing the small perturbations
around the equilibrium position. This is straightforward but a bit tedious.
If you work it through, you will get the equations

d2

dt2Δx =
3
4
Δx+

(
3
√

3
4

)
(1−2μ)Δy+C

d
dt
Δy; (6.10)

d2

dt2Δy =
9
4
Δy+

(
3
√

3
4

)
(1−2μ)Δx−C

d
dt
Δx . (6.11)
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Fig. 6.1: A contour plot of the potential Φ(x,y) when μ = 0.3. The L4 and L5 are at the
potential maxima. One can also see the saddle points L1,L2,L3 along the line joining
the two primary masses.

To check for stability, we try solutions of the form Δx = Aexp(λ t),
Δy = Bexp(λ t) and solve for λ . An elementary calculation gives:

λ 2 =
3−C2 ± [(3−C2)2 −27μ(1−μ)]1/2

3
. (6.12)

Stability requires that we should not have a positive real part to λ ; that
is, λ 2 must be real and negative. For λ 2 to be real, the term in Eq. (6.12)
containing the square root should have a positive argument. This requires

(C2 −3)2 > 27μ(1−μ) . (6.13)

Further, if both roots of λ 2 are negative, then the product of the roots must
be positive and the sum must be negative. It is easily seen that this requires
the condition C >

√
3. Hence we conclude that the motion is unstable if

C <
√

3; in particular, in the absence of the Coriolis force (C = 0), the
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All fine with Jupiter
and the Moon

What happens when
a Trojan wanders
off?

Comment for the
fussy expert

motion is unstable because the potential at L5 is actually a maximum.
But when C >

√
3 — and in particular for the real case we are interested

in with C = 2 — the motion is stable when the condition in Eq. (6.13) is
satisfied. Using C = 2, we can reduce this condition to μ(1−μ)< (1/27).
This leads to

μ <

(
1
2
−
√

23
108

)
≈ 0.0385. (6.14)

This criterion is met by the Sun-Jupiter system with μ ≈ 0.001 and by
the Earth-Moon system with μ ≈ 0.012. The stability of the Trojans is
assured. In fact, L5 and L4 are favourites of science fiction writers and
some NASA scientists for setting up space colonies. (There is even a US
based society called the L5 society, which was keen on space colonization
based on L5!)

The algebra is all fine but how does Coriolis force actually stabilize
the motion ? When the particle wanders off the maxima, it acquires a
non-zero velocity and the Coriolis force induces an acceleration in the
direction perpendicular to the velocity. As we noted before, this is just
like motion in a magnetic field and the particle just goes around L5. The
idea that a force which does not do work, can still help in maintaining the
stability, may appear a bit strange but is completely plausible. In fact, the
analogy between the Coriolis and magnetic forces tells you that one may
be able to achieve similar results with magnetic fields too. This is true
(and one example is the so called Penning trap).

To be absolutely correct — and for the sake of experts who may be
reading this — I should add a comment regarding another peculiarity
which this system possesses. A more precise statement of our result on
stability is that, when Eq. (6.14) is satisfied, the solutions are not linearly
unstable. The characterization “not unstable” is qualified by saying that
this is a result in linear perturbation theory. A more complex phenomenon
(which is too sophisticated to be discussed here, but see Ref. [23] if you
are interested) makes the system unstable for two precise values of μ
which do satisfy Eq. (6.14). These values happen to be (1/30)[15−√

213]
and (1/90)[45−√

1833]. (Yes, but I did say that the phenomenon is com-
plex!) While this is of great theoretical value, it is not of much practical
relevance since one cannot fine-tune masses to any precise values.
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Cycloid: Solu-
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problems?

7Getting the most of it!

In 1697, Bernoulli announced a challenge to the mathematicians with the
following words: “I, Johann Bernoulli, greet the most clever mathemati-
cians in the world. Nothing is more attractive to intelligent people than
an honest, challenging problem whose possible solution will bestow fame
and remain as a lasting monument. Following the example set by Pascal,
Fermat, etc., I hope to earn the gratitude of the entire scientific community
by placing before the finest mathematicians of our time a problem which
will test their methods and the strength of their intellect. If someone com-
municates to me the solution of the proposed problem, I shall publicly
declare him worthy of praise”.

The problem he proceeded to pose was known as the brachistochrone
problem (brachistos meaning shortest and chronos referring to time)
which requires us to find a curve connecting two points A and B in a
vertical plane such that a bead, sliding along the curve under the action of
gravity, will travel from A to B in the shortest possible time.

It was known to Johann Bernoulli (and to several others, see Box 7.1
for a taste of history) that this curve is (a part of) a cycloid if we take the
Earth’s gravitational field to be constant. The cycloidal path also has the
property that time taken for a particle to roll from any point to the min-
ima of the curve is independent of where it started from. In other words,
a particle executing oscillations in a cycloidal track under the action of
gravity will maintain a period which is independent of amplitude. This is
quite valuable in the construction of pendulum clocks and the early clock
makers knew this well. (This earned the cycloid the names isochrone and
tautochrone, as though brachistochrone was not a mouthful enough!)

The cycloid is the curve traced by a point on the circumference of a
wheel, which rolls without slipping, along a straight line. It is easy to
show (see Fig. 7.1; the figures for cycloids in some published works are
incorrect in the sense that the tangents at the extremities make arbitrary
angles with the axis!) that the parametric equation (x = x(θ), y = y(θ))
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Fig. 7.1: The cycloid represented by the parametric equations in Eq. (7.1) with the
y−axis pointing downwards. The geometrical interpretation of the parametric form in
Eq. (7.1) is obvious from the figure. Note that at the extremities like, for e.g., near the
origin, y ∝ x2/3 and hence the slope diverges.

No doubt, there is
progress

Trick 1: Use clever
coordinates

to a cycloid has the form

x = a(θ − sinθ); y = a(1− cosθ) , (7.1)

where a is the radius of the rolling circle. We shall now take a closer look
at this result.

While the initial solution to the brachistochrone problem engaged some
of the intellectual giants of seventeenth century, it is now within the grasp
of an undergraduate student. Let y(x) denote the equation to the curve
which is the solution to the brachistochrone problem with the coordinates
chosen such that x is horizontal and y is measured vertically downwards
as in Figure 7.1. Let the particle begin its slide from the origin with zero
velocity. If the infinitesimal arc length along the curve around the point
P(x,y) is ds = (1+ y′2)1/2dx where y′ = (dy/dx), then the particle takes
a time dt = ds/v, where v =

√
2gy is its speed at P. To determine the

curve we only need to find the extremum of the integral over dt, which is
a straightforward problem in the calculus of variations. (In fact, if we re-
place earth’s gravity by some other potential field, we only have to replace
v =

√
2gy by v = [2(V0 −V )/m]1/2.) Let us, however, analyse it from two

slightly different approaches [24].

In the first approach, we will make a coordinate transformation which
simplifies the problem considerably. Let us introduce, in the first quadrant,
two new coordinates α and β in place of the standard Cartesian coordi-
nates (x,y) by the relations

x = α2
(
β
α
− sin

β
α

)
; y = α2

(
1− cos

β
α

)
, (7.2)
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The 100 meter
dash by gravity

Trick 2:
Use hodograph

where α > 0 and 0 ≤ β ≤ 2πα . Obviously, for a fixed α , the curve
x(β ),y(β ) is a cycloid (which tells you that we are cheating a little bit
using our knowledge of the final solution!). The square of the velocity of
the particle

v2 = 2gy = ẋ2 + ẏ2 , (7.3)

where overdots denote differentiation with respect to time, can now be
expressed in terms of β̇ and α̇ by straightforward algebra. This gives the
relation

2gy = 2yβ̇ 2 +4
(

2α sin
β

2α
−β cos

β
2α

)2

α̇2 . (7.4)

The term involving α̇2 is non-negative; further, since y > 0 we have
β̇ ≤ √

g. Integrating this relation between t = 0 and t = T where T is
the time of descent, we get

β (T ) =
∫ T

0
β̇ dt ≤

∫ T

0

√
gdt =

√
gT . (7.5)

It follows that the time of descent is bounded from below by the equality
T ≥ β (T )/√g. The best we can do is to set β̇ =

√
g and α̇ = 0 to satisfy

Eq. (7.4) and hit the lower bound in Eq. (7.5). Since the required curve
has α = constant, it is obviously a cycloid parameterized by β .

The angular parameter of the cycloid, θ = β/α , varies with time at a
constant rate θ̇ = β̇/α =

√
g/α . It is clear from the parameterization in

Eq. (7.2) that the radius a of the circle which rotates to generate the cycloid
is related to α by a = α2. Hence the angular velocity of the rolling circle
is ω = θ̇ =

√
g/a. If the particle moves all the way to the other end of the

cycloid at a horizontal distance L = 2πa, then the time of flight will be
T = 2π/ω = (2πL/g)1/2. If L is 100 m, then with g = 9.8m s−2 we get
T ≈ 8 sec which is better than the world record for a 100 m dash! Gravity
seems to do quite well.

Another indirect way of arriving at the cycloidal solution is also of
some interest. This approach uses the concept of the hodograph which is
the curve traced by a particle in the velocity space (see Chapter 3). Let
us try to determine the hodograph corresponding to the motion of swiftest
descent. For simplicity, consider the full transit of the particle from a point
A to a point B in the same horizontal axis y = 0. Let the speed of the par-
ticle be v when the velocity vector makes an angle θ with respect to the
vx−axis in the velocity space. Then the hodograph is given by some curve
u(θ) which we are trying to determine. Using ẋ = vcosθ , ẏ = vsinθ ,
y = v2/2g, we can write the relations:

dt =
dv

gsinθ
; dx =

vdv
g

cotθ . (7.6)
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From there to here

We are now required to minimize the integral over dt while keeping the
integral over dx fixed. Incorporating the latter constraint by a Lagrange
multiplier (−λ ), we see that we need to minimize the following integral:

I =
∫ dv

g

(
1

sinθ
−λvcotθ

)
. (7.7)

The minimization is trivial since no derivatives of the functions are in-
volved and leads to the relation v = (1/λ )cosθ with −π/2 < θ < π/2.
We can now trade off the Lagrange multiplier λ for the total horizontal
distance L (obtained by integrating dx) and obtain λ 2 = π/2gL. Hence,
our hodograph is given by the equation

v(θ) =
√

2gL
π

cosθ ≡ 2R0 cosθ . (7.8)

This is just the polar equation for a circle of radius R0 with the origin co-
inciding with the left-most point of the circle. (We saw earlier in Chapter
3 that the hodograph for the Kepler problem is also a circle but that was
for motion in a (1/r) potential; here we are studying the motion under the
action of a constant gravitational field.)

How can we get to the curve in real space from the hodograph in the
velocity space? In this particular case, it is quite easy. Suppose we shift
the circular hodograph horizontally to the left by a distance R0. This re-
quires subtracting a horizontal velocity which is numerically equal to the
radius of the hodograph. After the shift, we obtain the hodograph of uni-
form circular motion, which is, of course, a circular hodograph with the
origin at its center. Hence, the motion that minimizes the time of descent is
just uniform circular motion added to a rectilinear uniform motion with a
velocity equal to that of circular motion. This is, of course, the path traced
by a point on a circle that rolls on a horizontal surface which is a cycloid.
The advantage of this approach is that we obtain the cycloid in terms of
its geometrical definition, instead of its equations.

Box 7.1: Brachisto and other chrones: A bit of history

This tautochrone problem has appeared in English literature! Her-
man Melville’s 1851 classic Moby Dick has a chapter called “The
Try-Works” which describes how the try-pots of the ship Pequod are
cleaned. (In case you haven’t read the book, a try-pot is a large caul-Moral: Read

Classics! dron, usually made of iron, which is used to obtain liquid oil from
whale blubber.) In that occurs the passage: “It was in the left hand try-
pot of the Pequod ..... that I was first indirectly struck by the remark-
able fact, that in geometry all bodies gliding along the cycloid, my
soapstone for example, will descend from any point in precisely the
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same time.” The remarkable fact Melville writes about is, of course,
the tautochrone problem.

One of the early investigations about the time of descent along a
curve was by Galileo. He, like many others, was interested in the time
taken by a particle to perform an oscillation on a circular track which,
of course, is what a simple pendulum of length L hanging from the
ceiling will do. Today we could write down this period of oscillation
as

T =

√
L
g

∫ π/2

0

dθ√
1− k2 sin2 θ

, (7.9)

where k is related to the angular amplitude of the swing. Of course,
in the days before calculus, the expression would not have meant
anything! Instead, Galileo used an ingenious geometrical argument
and — in fact — thought that he had proved the circle to be the curve
of fastest descent. It was, however, known to mathematicians of the
17th century that Galileo’s argument did not establish such a result.

The major development as regards the brachistochrone came up
when Bernoulli threw a challenge in 1697 to the mathematicians of
that day with the announcement I quoted in the beginning of this
chapter. Bernoulli, of course, knew the answer and the problem was
also solved by his brother Jakob Bernoulli, Leibniz, Newton and L’
Hospital. Newton is said to have received Bernoulli’s challenge at
the Royal Society of London one afternoon and (according to sec-
ond hand sources, like John Conduit — the husband of Newton’s
niece), Newton solved the problem by night-fall. The “solution”,
which was simply a description of how to construct the relevant cy-
cloid, was published anonymously in the Philosophical Transactions
of the Royal Society of January 1697 (back dated by the editor Ed-
mund Halley). Newton actually read aloud his solution in a Royal So-
ciety meeting only on 24 February 1697. Legend has it that Bernoulli
immediately recognized Newton’s style and exclaimed “tanquam ex
ungue leonem” meaning “the lion is known by its claw”.

The fact that brachistochrone and the tautochrone problems lead
to the same curve, viz., the cycloid, in the case of a constant gravi-
tational field is a bit of an accident. In general, if the potential varies Physics of brachisto

and tauto are quite
different

as the square of the arc length along a curve, then a bead sliding
on that curve will oscillate with a period independent of the ampli-
tude. If the force field is constant, so that the potential is linear in the
height, then this condition translates to a curve whose height should
be proportional to the square of the arc length. It is straightforward
to show that this condition is satisfied by the cycloid. In this sense,
the tautochrone problem is rather trivial and only involves the force



78 7 Getting the most of it!

Curves of
complementary
descent, defined

acting along the curve and is independent of the force acting nor-
mal to the curve. The situation regarding the brachistochrone is more
complex. In this case, there should be a delicate balance between the
centripetal force at any given point in the curve and the component
of the external force perpendicular to the curve.

You should also bear in mind the following distinction when you
think of the cycloid as a solution to both the tautochrone and brachis-
tochrone motions. Given a cycloid, if you start a particle sliding fromAnother difference
rest from any point, it will, of course, oscillate with a period inde-
pendent of amplitude. But a particle starting at some arbitrary point
in the cycloid will not be the correct extremal path for the brachis-
tochrone problem. The correct cycloid that is the solution to the
brachistochrone problem, for a particle starting from rest, always has
the cycloid kink at the starting position.

Given the solution to the brachistochrone problem, one is naturally led to
ask the following question: Let us consider a particle sliding along a given
curve from the origin to a point (r,θ) taking the time T (r,θ). We want to
know whether there exists another curve connecting these two points, on
which the particle can slide, taking the same amount of time. Obviously,
unless the first curve is a cycloid connecting the two points, we will expect
to find alternative solutions. Such curves are called complementary curves
of descent [25]. If θ = θ(r) is the equation to the curve, then the time of
descent is given by the integral of ds/v where s is the arc length and
v =

√
2gy =

√
gr sinθ is the velocity. Equating this to the given time of

descent T (r,θ) we get the equation

∫ √
1+ r2(dθ/dr)2

2gr sinθ
dr = T (r,θ) . (7.10)

Differentiating both sides with respect to r and manipulating the terms
lead to a quadratic equation

A
(

dθ
dr

)2

+B
dθ
dr

+C = 0 , (7.11)

with

A ≡ 2gr sinθ
(
∂T
∂θ

)2

− r2,

B ≡ 4gr sinθ
∂T
∂ r

∂T
∂θ

, (7.12)

C ≡ 2gr sinθ
(
∂T
∂ r

)2

−1 .
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The strange
complement to
a straight line

The brachistochrone
for the 1/r2 field

Maths is routine

This allows you to figure out complementary curves of descent of different
kinds.

As a simple example, let the original curve be a straight line which
makes an angle θ with respect to the x−axis. The time of descent in this
case is given by the function

T (r,θ) =

√
2r

gsinθ
. (7.13)

We want to find a curve which is the complement to this, having the same
time of descent. If you solve Eqs. (7.11), (7.12) with this function, you
find that the solution is given by

r = 2b
√

cosθ sinθ , (7.14)

which goes by the name Lemniscate of Bernoulli. Unfortunately this does
not have any other interesting applications in physics.

There is a nice generalization of the brachistochrone problem which
has not received much attention. The cycloid solution was obtained under
the assumption of a uniform, constant gravitational field of a flat Earth. In
reality, of course, the gravitational field varies as (1/r2) around a spherical
object. The question arises as to how the curve of swiftest descent gets
modified when we work with the (1/r2) force.

To tackle this problem, it is convenient to use the polar coordinates
in the plane of motion and approximate the gravitational source as a point
particle of mass M at the origin. We are interested in determining the curve
r(θ) such that a particle starting from a point A (with coordinates r = R
and θ = 0) will reach a point B (with coordinates r = r f , θ = θ f ) in the
shortest possible time. We will, as usual, encounter some curious features.

The mathematical formulation of the variational principle is quite sim-
ple. If v(r) is the speed of the particle when it is at the radial distance r,
then

v2 = 2GM
(

1
r
− 1

R

)
=C2

(
1
x
−1

)
, (7.15)

where x = r/R and C2 = 2GM/R. The variational principle requires us
to minimize the integral over ds/v where ds = Rdθ(x′2 +x2)1/2 is the arc
length along the curve with x′= dx/dθ . This, in turn, requires determining
the extremum of the integral

T =
R
C

∫
dθ
(

x′2 + x2

(1/x)−1

)1/2

≡
∫

L(x′,x)dθ . (7.16)

The Euler-Lagrange equation will lead to a second order differential equa-
tion involving x′′(θ). But since the integrand is independent of θ (“time”),
we know that x′(∂L/∂x′)− L is conserved (“energy”). Equating it to a
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constant K gives a first integral thereby allowing the problem to be re-
duced to quadrature. Fairly straightforward algebra then leads to the form
of the function θ(x) given by the integral

θ(x) =
∫ x

1

dy
y

√
1− y

λy3 + y−1
, (7.17)

where λ ≡ (R/KC).
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Fig. 7.2: Each of the curves in the figure gives the solution to the brachistochrone
problem when the gravitational force falls as (1/r2) from the origin. Note that each
curve has a turning point and none of the curves go through the “forbidden” region
between θ =−(2π/3) and θ =+(2π/3).
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Surprise: The
forbidden zone

Handle with care

Unfortunately, this is an elliptic integral making further analytic prog-
ress difficult. Working things out numerically, one can plot the relevant
curves which show a very interesting pattern (see Figure 7.2 ). To be-
gin with, one notices that each curve has a turning point x = �, say,
where (dx/dθ) = 0. This is a point of minimum approach related to λ by
λ = �−3(1− �). What is curious is the asymptotic behaviour of the curve
after it turns around. It is clear from Figure 7.2 that the curves never en-
ter the “forbidden region” between θ = −2π/3 and θ = +2π/3! This is
obvious from the figure; but can we understand this analytically?

One can do this but it requires a rather careful handling [26, 27] of the
integral in Eq. (7.17). As you can easily see, what we need to prove is that
the limiting value of θ given by this integral, when �→ 0 reaches a finite
limit. To do this, let us rewrite Eq. (7.17) for x = � after expressing λ as
�−3(1− �). This will give

θ(�) =
∫ �

1

dy
y

[
1− y

�−3 (1− �)y3 + y−1

]1/2

=

(
�3

1− �

)1/2 ∫ �

1

dy
y

[
1− y

(y− �)(y2 + �y+ �2(1− �)−1)

]1/2

. (7.18)

The second relation is obtained by factorizing the denominator since
(y−�) must be one of its roots. We are interested in the �→ 0 limit of this
integral which requires one more rescaling. Substituting q = (�/y)3/2, our
integral can be transformed to the form

θ(�)=
2

3
√

1− �

∫ �2/3

1
dq

{
1− �q−2/3

q(q1/3 −q)
(
q−4/3 +q−2/3 +(1− �)−1

)
}1/2

.

(7.19)

This one has a simple limit when �→ 0 and we get

θ(0) =
2
3

∫ 0

1

dq
(1−q2)1/2 =−π

3
. (7.20)

The angle from the positive x−axis is (π−π/3) = 2π/3 because we have
considered only the branch from the turning point. Further, there is a mir-
ror symmetric curve in the lower half plane as well. So we find that when
�→ 0 the angle of the trajectory reaches the asymptotic values:

θcrit =∓2π
3

. (7.21)

In fact, the 3 in (2π/3) of the forbidden zone comes from the power law
index of the force. For the brachistochrone problem in r−n force law, the
forbidden zone is given by −2π/(n+1)< θ < 2π/(n+1).
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A nice problem,
with no name!

Having described the classic variational problem which started it all,
we now discuss another one, which does not even seem to have a re-
spectable name. This problem [18] can be stated as follows. Consider a
planet of a given mass M and volume V and a constant density ρ = M/V .
We are asked to vary the shape of the planet so as to make the gravita-
tional force exerted by the planet on a given point at its surface as high as
possible. What is the resulting shape?

Most people would guess that the shape is either a sphere or something
like the apex of a cone. The latter is easy to refute since it puts a fair
amount of the mass away from the chosen point; but a sphere remains an
intriguing possibility. The correct answer, however, is quite strange and
can be obtained as follows.

Let the chosen point be at the origin and let the z−axis be along the
direction of the maximal force acting on a test particle at the origin. It is
obvious that this z−axis must be an axis of symmetry for the planet; if it
is not, then one can increase the z−component of the net force by moving
material from larger to smaller transverse distance until the planet is axi-
ally symmetric. So, our problem reduces to determining the curve x= x(z)
(with 0 < z < z0, say) which, on revolution around the z−axis, generates
the surface of the planet. (The solution is plotted as a thick unbroken curve
in Figure 7.3.)

To calculate the z−component of the gravitational force acting on the
origin, we divide the planet into circular discs, each of thickness dz, lo-

0.5 1.0 1.5 2.0
z

0.2

0.4

0.6

0.8

1.0

x

Fig. 7.3: The solid of revolution obtained by rotating the unbroken (thick) curve, about
the z−axis, will give the shape of a constant density planet that will exert the maximum
possible z−component of gravitational force at the origin. This shape does not seem to
have any special name. The dashed (thin) curve is a sphere with the same volume given
for comparison.
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Routine maths but ...

... you could have
got it with no maths!

cated perpendicular to z−axis. To get the force exerted on a test particle of
mass m by any single disc, we further divide it into annular rings of inner
radii x and outer radii x+dx. The force along the z−axis by any one such
ring will be given by

dF = Gm(ρ2πxdx)dz
1

x2 + z2
z√

x2 + z2
. (7.22)

Hence the total force is given by

F = 2πGmρ
∫ z0

0
dz
∫ x(z)

0
xdx

z
(x2 + z2)3/2

=
3GMm

2a3

∫ z0

0
dz
(

1− z
(x2(z)+ z2)1/2

)
. (7.23)

In arriving at the last expression we have expressed the density as
ρ = 3M/4πa3 so that the volume of the planet is constrained by the con-
dition

V = π
∫ z0

0
dzx2(z) =

4πa3

3
. (7.24)

Imposing this condition by a Lagrange multiplier (−λ ), we see that we
have to essentially find the extremum of the integral over the function

L = 1− z
(x2 + z2)1/2 −λx2 . (7.25)

This is straightforward and we get

z
(x2 + z2)3/2 = 2λ =

1
z2

0
, (7.26)

where the last equality determining the Lagrange multiplier follows from
the condition that when z = z0 we have x = 0. Our constraint on the total
volume [given by Eq. (7.24)] implies that z3

0 = 5a3 thereby completely
solving the problem. The polar equation to the curve is

r2 = 52/3a2 cosθ ; (7.27)

for comparison, a sphere with the same volume will be described by the
equation r = 2acosθ .

With hindsight, one can obtain this result from a simpler, intuitive argu-
ment. The crucial point is to realize that all the small elements of mass dm
on the surface of the material must contribute equally to the z−component
of the force at the origin. If this is not the case, we can simply move a small
amount of matter from one point to another point on the surface thereby
increasing the force. If we denote the mass element by their distance r
from the origin and the angle θ which it makes with the z−axis, then an in-
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But then, it is the
principle that
matters.

A beauty from
extremum

The critical ray

finitesimal element of mass dm on the surface provides the z−component
of the force which varies as Fz = (Gdm/r2)cosθ . Since this has to be
independent of the location, the surface must satisfy r2 ∝ cosθ which is
precisely our solution.

The shape of our weird planet is shown in Figure 7.3 by the thick un-
broken curve (along with that of a sphere with same volume) which has
no cusps at the poles. This shape does not seem to have any specific name.
The total force exerted by this planet at the origin can be computed using
Eq. (7.23). We get:

F =

(
27
25

)1/3 GMm
a2 ≈ 1.03

GMm
a2 , (7.28)

which is not too much of a gain over a sphere.
We note a minor subtlety which we glossed over while doing the vari-

ation in this problem. Unlike the usual variational problems, the end point
z0 is not given to us as fixed while doing the variation of the integrals in
Eq. (7.23), Eq. (7.24). It is possible to take this into account by a slightly
more sophisticated treatment but it will lead to the same result in this par-
ticular case.

Another beautiful phenomena all of us are familiar with, which owes
its existence to an extremum principle, is the rainbow. We all know that
a rainbow is formed when the light from the Sun that is scattered by a
raindrop reaches your eye. But, of course, there are raindrops all over the
sky, while you see the rainbow at a characteristic angle and shape in the
sky! This is due to the fact that you will see the rainbow only when a large
number of rays of light are accumulating in a particular direction after
passing through the raindrop.

Figure 7.4(a) shows the path of a light ray through a spherical droplet of
water, which leads to the formation of, what is called, a primary rainbow.
The ray incident at A gets refracted; part of the light is reflected at B which
is again refracted at C. The angles x and y are related by sinx = nsiny
where n is the refractive index of water. The direction of the ray changes
by (x− y) at A, by (π−2y) at B and by (x− y) at C thereby undergoing a
total deviation D(x) = 2x−4y+π .

The net effect of the water droplet is to deviate a ray of light as shown
in Fig. 7.4(b), where the incident direction of ray is taken to be horizontal.
The angle of incidence x will be different for droplets of water at different
locations and, in general, D will change with x. There is, however, one
particular angle xc at which (dD/dx) = 0. At this critical value, the devi-
ation D = Dc is stationary with respect to x and one sees an enhancement
of several rays traveling towards the same direction after going through
the water droplets. (In the above analysis, we only maximize the devia-
tion angle D with respect to the incident angle x. Rigorously speaking,
we have to worry about the cross section of the raindrops available to the
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Fig. 7.4: (a) The path of the light ray through a raindrop which produces the primary
rainbow. The net effect of two refractions (at A, C) and one reflection (at B) is to deviate
the light ray by an angle D = 2x−4y+π . (b) At a critical angle of incidence, D is an
extremum with respect to x and a large number of rays accumulate along this direction
undergoing a deviation Dc. This causes a rainbow in the sky located on the semicircular
rim of a cone with vertex at O and semi vertical angle (π−Dc) = 4yc −2xc.

All that beauty, just
from a few numbers

Given 1, make 2,
3, ...

light incident at different angles which, in the case of the spherical geom-
etry, is governed by the usual sinθdθdφ factor. Fortunately, this does not
affect the final conclusion.) This will lead to a rainbow in the sky located
on the semicircular rim of a cone with vertex at O and semi vertical angle
(π−Dc) = 4yc −2xc. Elementary calculation now gives

cos2 xc =
1
3
(n2 −1). (7.29)

Taking the refractive index for λ = 400 nm to be n400 = 1.3440 and for
λ = 700 nm to be n700 = 1.3309, we find that xc = (58.77◦,59.54◦) and
yc = (39.51◦,40.36◦) for the two wavelengths, leading to (π − Dc) =
(40.51◦,42.38◦). Thus, the primary rainbow is at about 41◦ and its an-
gular width is about 1.87◦.

A little thought shows that while it is possible for a raindrop to scatter
light at values smaller than 42◦, it cannot do it at angles larger than 42◦.
This has the consequence that the region in the sky below the rainbow
appears brighter than the region above it.

It is now obvious that one can obtain similar results with the light rays
reflecting more than once inside the raindrop. This leads to what is known
as secondary, tertiary etc. rainbows in the sky. It is easy to repeat the
analysis in these cases and we will find that, for the Nth order rainbow,
Eq. (7.29) gets replaced by the result

cos2 xN =
1

N(N +2)
(n2 −1) , (7.30)

which, of course, reduces to Eq. (7.29) when N = 1.
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The real surprise is
with the tertiary

For N = 2, we get the secondary rainbow at an angle of 52◦ which is
about 10◦ higher in the sky than the primary. It is less bright (by about
43 per cent) than the primary because of the additional loss of intensity
due to the second reflection. The second reflection also reverses the colour
sequence in the secondary; the red edge of the rainbow will appear lower
in the sky than the violet one.

The geometry gets a bit trickier when we move to N = 3. The total
deviation suffered by the light ray is now 318.4◦ after 3 reflections. This
means that the tertiary rainbow is actually behind you — and is a circular
halo around the Sun at about 41.6◦ — when you are facing the primary
and secondary rainbows! If you proceed along these lines, the position of
the first six orders of rainbows in the sky around you will be as shown in
the Fig. 7.5.

136   [4]

 42   [1]
138   [3]

 52   [5]  51   [2]

 32   [6]

To the Sun

Fig. 7.5: The locations of different orders of rainbow in the sky marked in square brack-
ets as [1], [2], ... etc. The primary rainbow is at around 42◦ and the secondary one is at
51◦. The next two, the tertiary and the fourth order rainbows, are behind the observer
when she is facing the primary rainbow! The fifth and sixth order rainbows are in the
forward direction, but unfortunately too faint to be seen.

Box 7.2: Rainbow – through the ages

Given the rather spectacular visual nature of the rainbow and the fact
that it is not a periodic phenomenon in the sky (unlike for e.g., the
waxing and waning of the Moon or the orbits of celestial orbits), it
is no surprise that it had attracted considerable attention from pre-
history. (For a detailed description of the history, see Ref. [28].)

Many people have provided “explanations” for the rainbow, in-
cluding Aristotle, Kepler and Gilbert. The clearest and the one clos-
est to the correct explanation came in the middle ages, both in the
east and in the west. In the east, it was due to Kamal al-Din al-Farisi
(1267–1319) and in the west it was from the German monk Dietrich
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von Freiberg (1250–1311). Both of them correctly stated that the scat-
tering is due to individual raindrops — unlike many before them who
thought it was from the rain clouds themselves. Freiberg was also the
first to associate the primary rainbow with two refractions and one
reflection and the secondary rainbow with two refractions and two
reflections in his small book, De iride et radialidus impressionibus.

The only thing missing in these explanations is the fact that rays
get concentrated at a particular degree. This was the major contribu- Hard work without

calculustion from Descartes and he obtained this by actually tracing the rays
through spherical water droplets with pencil, paper and, of course,
Snell’s law. This way he obtained both the primary and secondary
rainbows and their respective angles of 42◦ and 52◦.

The secondary rainbow, as far as I know, has been described in the
contemporary literature only once and at that time the author got it
wrong! Rebecca Goldstein ends her novel “Strange attractors” [29] Fiction is, after all,

fictiondescribing a group of mathematicians going outdoors to look at a
double rainbow. She puts the secondary rainbow “beneath” the pri-
mary one, though with the correct inversion of the spectrum.

All these naturally suggested the existence of higher order rain-
bows and many intrigued people searched the sky in vain for cen-
turies, particularly for the tertiary rainbow. Being quite logical, they
were all looking in the sky above the secondary, maybe another 10◦
up. For reasons which will be obvious to you from the previous dis-
cussion, nobody ever saw it in the historical days. ... in spite of some

occasional claims to
the contrary!

It is unclear whether even Newton, who worked out all the details
of the nth order rainbow, bothered to actually calculate the specific
angular position of the tertiary rainbow; if he did, he did not publish
it either in a series of inaugural lectures as Lucacian Professor in
1670-72 or in his work Opticks. In the latter, he merely says that
the light that undergoes three or more reflections is “scarcely strong
enough to cause a sensible bow”. Of course we know that — since
the tertiary rainbow is a halo around the Sun — the glare of the Sun Did Newton know

where to look?will completely wipe out this rainbow, making Newton’s comment
rather irrelevant if he had calculated the exact position. (Bernoulli
also discusses this issue without identifying its location in the sky.)
The clear statement as to where the tertiary is located and why it is
impossible to see seems to have been first published by Halley as late
as in the 1700s.

Obviously, you can hope to spot the tertiary rainbow only in a
happy circumstance in which the Sun’s glare is blocked. Eclipses are
obvious choices but you also need to have rain as well as the proper
angle for the sunlight. Given all these, it is not surprising that pho-
tographing the tertiary rainbow was not achieved until as late as 2011!
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Michael Grossmann [30] happened to witness a rain shower in south-
west Germany on 15 May 2011. The rain was falling sun ward while
a dark cloud and a tree blocked part of the intensity in the sky near
the Sun. On that day, Grossman managed to get a photograph of theGot it, at last!
tertiary rainbow which was in agreement with the theory!



Flow of dry water =
Electrostatics

A cute result

8Surprises in Fluid Flows

The simplest form of the fluid flow, that arises when a body moves through
a hypothetical fluid, will satisfy the following conditions: First, the fluid
is assumed to be incompressible with the density being a constant. Then,
the conservation of mass, expressed in the form of the continuity equation

∂ρ
∂ t

+∇ · (ρvvv) = 0 , (8.1)

(in which ρ is the density and vvv is the fluid velocity) reduces to the simple
condition ∇ · vvv = 0. Second, we will assume that the flow is irrotational
(∇× vvv = 0) allowing for the velocity to be expressed as a gradient of
a scalar potential vvv = ∇φ . Finally we will ignore all properties of real
fluids, like viscosity, surface tension etc. and will treat the problem as
one of finding the solutions to the two equations ∇ · vvv = 0 and ∇× vvv =
0 subject to certain boundary conditions. Equivalently, we find that the
potential satisfies Laplace’s equation ∇2φ = 0. So, the problem reduces to
solving the Laplace equation with vvv satisfying the boundary conditions —
which are the only non-trivial features of the problem! Such a problem is
considered to be well-understood but — as we will see in this chapter —
even the simplest of them can lead to surprises [31].

Let us consider a body of an arbitrary shape moving through the fluid
with a velocity uuu. Then we need to solve the Laplace equation subject
to the boundary condition nnn · vvv = nnn · uuu at the surface, where nnn is the nor-
mal to the surface. We would expect the fluid flow near the body to be
affected by its motion but this effect should be negligible at sufficiently
large distances. Hence the fluid velocity vvv will be zero at spatial infinity.

The general form of the fluid velocity at large distances from the body
(of arbitrary shape) can be determined by the following argument. We
know that the function 1/r satisfies the Laplace equation. Further, if φ
satisfies the Laplace equation, the spatial derivatives of φ also satisfy the
same equation. Therefore, the directional derivative of 1/r, along some
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A trick to get
dipole potential

Electrostatic insight

direction specified by an arbitrary vector AAA will also satisfy the Laplace
equation. Such a directional derivative is given by AAA ·∇(1/r) and will fall
as 1/r2 at large distances. Hence, at large distances from the body, we can
take the leading order terms in the potential to be

φ =−q
r
+AAA ·∇

(
1
r

)
+O(1/r3) . (8.2)

This, of course, can be recognized as just electrostatics in disguise; the
expansion in Eq. (8.2) is just the large distance expansion of the potential
due to a distribution of charges. The first term is the monopole Coulomb
term and the second one is the dipole term. (Incidentally, the dipole term is
just the difference in the potential due to two charges kept separated by a
distance AAA; clearly, the net potential will be the directional derivative along
AAA. This is the quickest way to get the dipole potential.) At sufficiently
large distances we can ignore further terms, obtained by taking the second,
third, .... derivatives of 1/r.

The velocity field is then the analogue of the electric field in electro-
statics. From the Gauss law we know that the flux of the electric field at
large distances is proportional to the ‘total charge’ q. At large distances,
the flux of the velocity field in our problem vanishes. Hence, it follows
that q = 0 and the asymptotic form of the potential must have the form:

φ = AAA ·∇
(

1
r

)
=−AAA ·nnn

r2 , (8.3)

where nnn is the unit vector in radial direction. Taking the gradient, we get
the velocity field to be

vvv = (AAA ·∇)∇
(

1
r

)
=

3(AAA ·nnn)nnn−AAA
r3 . (8.4)

(These manipulation are most efficiently done using index notation and
summation convention, with ∂αr = (1/2r)∂αr2 = xα/r used repeatedly.)
The actual form of AAA needs to be determined using the conditions near the
body (which will be a mess for a body of arbitrary shape) but it is inter-
esting that the flow at large distances is fixed entirely in terms of a single
vector AAA. In fluid mechanics, it is a bit of a surprise but in electrostatics it
is not. If the monopole vanishes, you would expect the dipole moment to
determine the behaviour of electric field at large distances.

The real surprise comes up when we try to calculate the total kinetic
energy associated with the fluid flow given by

Klab =
1
2
ρ
∫

d3xxx v2 , (8.5)



8 Surprises in Fluid Flows 91

What is the total
kinetic energy?

Kinetic energy is
also fixed by AAA

where the integral is over all space outside a sphere of radius a and the
subscript “lab” stands for the lab frame in which the sphere is moving with
a velocity uuu. (The fact that the sphere is moving is irrelevant since it only
shifts the origin by uuut which is a constant as far as the spatial integration
is concerned.) While the fluid flow at large distances can be expressed
entirely in terms of a single vector AAA, the flow closer to the body can be
extremely complicated. Hence, one might have thought that, in such a
general case, one cannot infer anything about the total kinetic energy of
the fluid. But it is indeed possible to express the total kinetic energy of
the fluid flow entirely in terms of the single vector AAA even though the fluid
flow everywhere cannot be expressed in terms of AAA alone. (This result, as
well as Eq. (8.8) and Eq. (8.20) below, are derived in Ref. [32] but do not
seem to be discussed in detail in any other book.)

To obtain this result, we will use the identity v2 = u2+(vvv+uuu) ·(vvv−uuu).
If we integrate both sides of this equation over a large volume V , the first
term on the right will give a contribution proportional to (V −V0), where
V0 is the volume of the body. In the second term, we write (vvv + uuu) =
∇(φ +uuu · rrr). Using ∇ · vvv = 0,∇ ·uuu = 0, we can write the second term as a
total divergence ∇ · [(φ +uuu · rrr)(vvv−uuu)]. On integrating this over the whole
space, the second term becomes a surface integral over the surface of the
body and a surface at large distance. That is, we have proved:∫

v2dV = u2(V −V0)+
∮

S+S0

(φ +uuu · rrr)(vvv−uuu) ·nnn dS , (8.6)

where S is a surface bounding the volume V at large distance and S0 is the
surface of the body and the surface integral is taken over both.

The (vvv− uuu) · nnn term vanishes on the surface of the body, due to the
boundary conditions; hence we get no contributions from there! This is
good since we have no clue about the pattern of velocity flow near the
body. On the surface at large distances from the body, we can use the
asymptotic form of the velocity field given in Eq. (8.4) to perform the
integral, taking the surface to be a sphere of large radius R. The area
dS = R2dΩ increases as R2 while v falls as 1/R3 and φ falls as 1/R2.
So φ(vvv−uuu) ·nnn ≈−φuuu ·nnn on S. Hence the surface integral in Eq. (8.6) on
S becomes the sum

−
∮

S
φuuu ·nnn R2dΩ +

∮
S
(uuu ·nnn)(vvv ·nnn) R3dΩ −

∮
S
(uuu ·nnn)2 R3dΩ . (8.7)

The integration over angular coordinates can be done using the easily
proved relation 〈(AAA · nnn)(BBB · nnn)〉 = (1/3)AAA ·BBB where 〈· · · 〉 denotes the an-
gular average which is 1/4π times the integral over dΩ . Using this, we
see that the integral over −(uuu ·nnn)2R3 gives −u2V , which precisely cancels
with the u2V in the first term in Eq. (8.6). Using Eq. (8.3) and Eq. (8.4),
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A curiosity

Simple case
of a sphere

we get the final answer to be:

Klab =
1
2
ρ (4πAAA ·uuu−V0u2) . (8.8)

Thus, if we know the motion of the fluid at very large distances from the
body, we can compute the total kinetic energy of the fluid flow without
ever knowing the velocity field close to the body!!

We can obtain another curious result using this. To do this, we note
that the Klab can also be expressed in a different form of surface integral.
Writing vvv = ∇φ the expression for kinetic energy reduces to

K =
1
2
ρ
∫

V
d3xxx(∇φ)2 =

1
2
ρ
∫

V
d3xxx∇ · (φ∇φ) , (8.9)

where we have used ∇2φ = 0. Using Gauss theorem, this expression can
be converted to a surface integral over the body and over a surface at large
distance. The second one vanishes, giving

Klab =−1
2
ρ
∮

S0

dS(nnn · vvv)φ =−1
2
ρ
∮

S0

dS(nnn ·uuu)φ , (8.10)

where we have used nnn · vvv = nnn · uuu at the surface. Using the expression for
Klab from Eq. (8.8), we can now obtain the following result for the integral
of (nnn ·uuu)φ over the surface of the body:

−
∮

S0

dS(nnn ·uuu)φ = (4πAAA ·uuu−V0u2) , (8.11)

even though we do not know either the shape of the body or the velocity
potential on the surface!

Let us now look at the electrostatic analogue of this result. You are
given a distribution of charges with qtot = 0 and dipole moment ppp in a
region bounded by a surface S0. You are also given a constant vector EEE0
and you are told that the component of the electric field normal to S0 is
given by nnn ·EEE0. Then, the electrostatic energy is proportional to (4π ppp ·
EEE0 −V0E2

0 ) where V0 is the volume of the region bounded by S0.

We will now specialize to the simplest of all possible shapes for the
body: a sphere of radius a. In this case, the dipole potential happens to be
the exact solution at all distances outside the sphere. This is not difficult
to understand. Given the spherical symmetry, the only vector that can ap-
pear in the solution is the velocity of the body uuu. Linearity of the Laplace
equation (and the boundary condition) tells you that the potential must be
linear in this vector uuu. Hence the solution must have the form in Eq. (8.3)
with AAA ∝ uuu. Using the boundary condition nnn · vvv = nnn ·uuu at the surface, it is
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Effective mass from
kinetic energy

The misbehaving
momentum

Infinities? In fluid
flow past a sphere?!

A way out, but a
cheap one

easy to show that

AAA =
1
2

a3uuu , (8.12)

which completely solves the problem. We will now explore this solution.

Given the fluid flow pattern everywhere, we can explicitly compute
the total kinetic energy carried by the flow using any of the expressions
derived above. We get

Klab = −1
2
ρ
∫

a2dΩ
(
− 1

a2

)
(AAA ·nnn)(uuu ·nnn)

=
1
2
ρ(4π)

1
3
(AAA ·uuu) = 1

4
mdispu2 , (8.13)

where mdis is the mass of the fluid displaced by the sphere. So the to-
tal kinetic energy is (1/2)[mbody + (1/2)mdis]u2, with the fluid adding
(1/2)mdis to the effective mass of the sphere. Of course, our general ex-
pression, Eq. (8.8) leads to the same result when we use Eq. (8.12) and
everything seems fine.

We next consider the total momentum PPP carried by the fluid which is
the integral over all space of ρvvv. Normally, we would have expected it to
be (1/2)mdispuuu but we are in for a rude shock. By symmetry, the vector
PPP has to be in the direction of uuu so we only need to compute the scalar
PPP ·uuu. But since v falls as 1/r3 and the volume grows as r3 we are in trou-
ble! (This did not happen for the kinetic energy since we were integrating
v2 ∝ 1/r6 over all space.) Explicitly, we have,

PPPlab ·uuu = ρ
∫

d3xxx
1
r3 [3(AAA ·nnn)(uuu ·nnn)−AAA ·uuu]

= ρ
∫ ∞

a

dr
r

∫
dΩ [3(AAA ·nnn)(uuu ·nnn)−AAA ·uuu] . (8.14)

Obviously, our power counting argument is correct and the r-integral di-
verges logarithmically at large distances! On the other hand, the angular
integration over spherical surfaces gives zero because 〈3(AAA · nnn)(uuu · nnn)〉 =
AAA ·uuu cancels the second term. It is incredible that the simplest problem in
fluid flow past a body actually leads to a product of zero and infinity!

If we perform the integral between two spheres of radii r = a and r = R
centered on the moving sphere at any given instant of time, then the an-
swer is indeed zero because the angular average gives zero. This would
have been an acceptable result, except for two reasons. First, the result
depends on taking the outer boundary to be a sphere. If we choose some
other shape, say, a cylinder coaxial with the direction of motion of the
sphere, the result can be different. One feels uneasy about the result de-
pending on what one is doing at infinity especially since the direction of
uuu breaks the spherical symmetry.
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This is just the time
dependent version
of Bernoulli’s
equation.

Another nice,
general, result

Second, one can argue that, if the sphere is pushed (through a fluid)
from rest until it acquires a velocity uuu, then — in the process — some
momentum is imparted to the fluid. To compute this, one needs to know
the pressure which acts on the sphere when uuu is a function of time [33].
Let me briefly indicate how this can be obtained. The starting point is the
Euler equation

∂vvv
∂ t

+(vvv ·∇)vvv =−∇p
ρ

. (8.15)

When vvv = ∇φ(t,xxx), you can manipulate this equation to show that

∇
[

p+
1
2
ρv2 +ρ

(
∂φ
∂ t

)]
= 0 , (8.16)

so that the pressure can be expressed in the form

p = p∞− 1
2
ρv2 −ρ

∂φ
∂ t

, (8.17)

where p∞ is the pressure at infinity. We are interested in the net force
in the direction of motion of the sphere, taken to be the z-axis, which
can obtained by integrating pcosθ over the surface of the sphere. From
Eq. (8.4) we see that v2 will be a function of cos2 θ so the contribution
from the first two terms in Eq. (8.17) will vanish on integration over a
sphere. The only surviving contribution comes from the last term, which
can be easily evaluated to give

Fz =−
∫ π

0
2πa2 sinθdθ

[
1
2
ρacos2 θ

duz

dt

]
=

1
2

mdisp
duz

dt
. (8.18)

Clearly, the total momentum imparted is
∫

Fzdt =
1
2

mdispuz , (8.19)

which makes sense when we remember that the kinetic energy comes with
the effective mass (1/2)mdisp. So, this is another purely local reason to
believe that the total momentum of the fluid flow is non-zero.

In fact, we can generalize this argument and obtain a finite expression
for the momentum for any body moving through a fluid. This momentum,
once again, can be expressed entirely in terms of the vector AAA for a body
of arbitrary shape. To obtain this result, we use Eq. (8.8) and the relation
dE = uuu ·dPPP which relates the infinitesimal changes in the energy and mo-
mentum. To prove this relation, let us assume that the body is accelerated
by some external force FFF causing the momentum of the fluid flow to in-
crease by an amount dPPP in a time interval dt. From the relation dPPP = FFFdt,
we immediately get uuu ·dPPP = FFF ·uuudt = dE. Given the form of E, it is now
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Go to the rest frame
of the sphere ...

... and land in
serious trouble
again

Moral: Galilean
invariance is tricky
in a medium

Result from energy
conservation ...

an elementary matter to verify that the total momentum of the fluid flow
is given by

PPP = 4π ρAAA−ρV0uuu . (8.20)

We see that this is, in general, non-zero. In the case of the sphere it does
give (1/2)mdisuuu which what we naively would have expected. Of course,
the argument is designed to give this.

When we study the same result in the rest frame of the sphere, it be-
comes more apparent that we need to regularize the problem by introduc-
ing a very large (but finite) volume for the total fluid. In this frame, we
have a sphere of radius a located around the origin and the fluid is flowing
past it. The boundary condition at infinity is now different and we expect
the fluid velocity to reach a constant value −uuu at large distances. (In the
electrostatic case, this is easily achieved by adding a constant electric field
to a dipole.) This leads to a velocity potential of the form

ψ =−rrr ·uuu+φ =−rrr ·uuu− AAA ·nnn
r2 . (8.21)

We denote the velocity potential in the rest frame by ψ to distinguish it
from the velocity potential in the lab frame, φ . Let us now ask what is the
kinetic energy of the fluid in this frame in which the body is at rest. The
fluid velocity now is www = vvv−uuu. The kinetic energy in the rest frame will
be

Krest =
∫

d3xxx
1
2
ρ w2 =

1
2
ρ
∫

d3xxx
[
v2 +u2 −2vvv ·uuu]

=
1
2
ρ
∫

d3xxxu2 −uuu ·PPPlab +Klab . (8.22)

We see that the last term is the kinetic energy in the lab frame, Klab, which
is well-defined. The second term is ambiguous. It vanishes if we use spher-
ical regularization, but is given by Eq. (8.20) if we use local energy con-
servation arguments. In the latter case, Klab −uuu ·PPPlab =−(1/4)mdispu2 is
negative. The first term, however, will be divergent if we take the volume
of the fluid to be infinite and is positive. This divergence arises because,
if the fluid extends all the way to infinity, then most of it will be moving
with a velocity −uuu in the rest frame of the sphere. This will contribute
an infinite amount of kinetic energy. While quite understandable, it shows
that Galilean invariance needs to be used with care in the presence of an
external medium. There is no simple way of handling this difficulty.

I conclude this chapter with another, seemingly paradoxical, result in
fluid flow which, fortunately, is well understood. But it leads to a curious,
and not so well known effect. Consider the flow of a fluid through an
orifice of area A2 as shown in Fig. 8.1. We will assume that A1 � A2 and
the fluid is incompressible giving v1A1 = v2A2 and hence v1 � v2. Using
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P2, A2, v2
P1, A1, v1

Fig. 8.1: Flow of a fluid through a small orifice. Simple minded application of conser-
vation laws for energy and momentum leads to a paradox. In reality, the cross section
of the outgoing stream contracts to avoid this paradox which leads to a phenomenon
called Vena Contracta.

... conflicts
with that from
momentum
conservation!

the Bernoulli’s equation P+(1/2)ρv2 = constant along streamlines, we
get the result

v2
2 ≈ 2

P1 −P2

ρ
. (8.23)

Let us next try to get the same result using force balance. Since the mass
flux across an area is ρvA, the momentum flux is ρv2A. The net flux of
momentum through the region bound by an area A1 on the left and area
A2 on the right, is therefore

d p
dt

= ρ (v2
2A2 − v2

1A1)≈ ρv2
2A2 , (8.24)

when A1v2
1 � A2v2

2. This rate of change of momentum is caused by the
net force on the volume given by

F ≈ P1A1 − [P1(A1 −A2)+P2A2] = (P1 −P2)A2 . (8.25)

Equating the force in Eq. (8.25) to the rate of change of momentum in
Eq. (8.24) we get the result

v2
2 ≈

P1 −P2

ρ
, (8.26)

which rudely contradicts the result in Eq. (8.23). Clearly, energy con-
servation cannot contradict momentum conservation ? Where did we go
wrong?
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Nature knows
physics

Interestingly enough, the logic and the analysis based on Fig. 8.1 is
quite correct but the figure itself is wrong! Nature, which knows that
both energy and momentum need to be conserved, adapts to the situation
by making the cross section of the outgoing stream contract as it flows.
This phenomena called “Vena Contracta” was (probably) first discussed
by Torricelli. To see how this works out, assume that the pressure, area and
velocity changes from the values (P2,A2,v2) to (P3,A3,v3) as the stream
proceeds with P3 � P1. In this case, we get the momentum flux as

d p
dt

= ρ (v2
3A3 − v2

1A1)≈ ρv2
3A3 ≈ 2P1A3 , (8.27)

where we have used Bernoulli’s equation with P3 � P1. The force needed
to cause this momentum change is now given by

F ≈ P1A1 − [P1(A1 −A2)+P3A3] = (P1A2 −P3A3)≈ P1A2 . (8.28)

The force balance now leads to the area contraction:

A3 =
A2

2
, (8.29)

which will save the situation. This is, of course, a rather crude estimate
and observations suggest a value close to 0.64 rather than 0.5 which we
have obtained. But the basic physics of the problem is indeed what we
have described.

One can model the 2-dimensional flow in this case using the fact that
the real and complex parts of any analytic function satisfy the Laplace
equation. With a clever choice of such functions, one can obtain an ana-
lytical model in which the contraction factor is π(2+π)−1 ≈ 0.61. Such
a modeling also shows that nearly 90 per cent of the contraction occurs
within a distance which is about 0.4 of the width of the orifice.



The simplest
problem in physics,
or is it?

The period of
oscillation

9Isochronous Curiosities:
Classical and Quantum

Your study of classical mechanics usually begins with the analysis of a
particle of mass m moving in one dimension under the action of a potential
V (x). This is probably the simplest problem in classical mechanics and
possibly the whole of physics. As we shall see, this apparent simplicity is
rather deceptive and this problem hides some interesting surprises [34].

Using the constancy of the total energy, E = (1/2)mẋ2+V (x), one can
write down the equation determining the trajectory of the particle x(t) in
the form of the integral

t(x) =
√

m
2

∫ x dx√
E −V (x)

. (9.1)

For a given V (x), this determines the inverse function t(x) and the prob-
lem is completely solved. In this chapter, we are interested in the case of
bounded oscillations of a particle in a potential well V (x) which has the
general shape like the one shown in Fig. 9.1. The potential has a single
minimum and increases without bound as |x| → ∞. For a given value of
energy E, the particle will oscillate between the two turning points x1(E)
and x2(E) which are given by the roots of the equation V (x) = E. The
period of oscillation between the two turning points can be immediately
written down using Eq. (9.1) as:

T (E) =
√

m
2

∫ x2(E)

x1(E)

dx√
E −V (x)

. (9.2)

(This is actually one-half of the time it takes for the particle to return to the
original position; but we will call it period for simplicity.) For a general
potential V (x), the result of integration on the right hand side will depend
on the value of the energy E. In other words, the period of oscillation
will depend on the energy of the particle; equivalently, if one imagines
releasing the particle from rest at the location x = x1, say, then the period
will depend on the amplitude x1 of oscillation.
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V (x)

x1 x2
x

E

Fig. 9.1: A one-dimensional potential with a single minimum which supports oscilla-
tions

Again, harmonic
oscillator seems
special ...

... but is it, really?

For a simple class of potentials, it is quite easy to determine how the
period T scales with the energy E. Consider, for example, a class of po-
tentials of the form V (x) = kx2n where n is an integer. These potentials are
symmetric in the x−axis and have a minimum at x = 0 with the minimum
value being Vmin = 0. In this case, by introducing a variable q such that
q = (k/E)1/2nx the energy dependence of the integral in Eq. (9.2) can be
easily identified to give

T (E) ∝
1√
E

E1/2n
∫ 1

0

dq√
1−q2n

∝ E
1
2 (

1−n
n ) . (9.3)

For all values of n other than n = 1, the period T has a non-trivial de-
pendence on the energy. However, when n = 1, which corresponds to the
harmonic oscillator potential V (x) = kx2, the period is independent of the
energy. This, of course, is the well known result that the period of a har-
monic oscillator does not depend on the amplitude of the oscillator. The
above analysis also shows that amongst all the symmetric potentials of the
form V (x) ∝ x2n, only the harmonic oscillator has this property.

Let us now consider the inverse problem. Suppose you are given the
function T (E). Is it possible to determine the potential V (x)? For example,
if the period is independent of the amplitude, what can we say about the
form of the potential V (x)? Should it necessarily be a harmonic oscillator
potential or can it be more general?

Before launching into a mathematical analysis, let me describe a simple
example which deserves to be better known than it is. Consider a potential
of the form

V (x) = ax2 +
b
x2 (a > 0,b ≥ 0) , (9.4)

in the region x > 0. In this region, the potential has a distinct minimum
at xmin = (b/a)1/4 with the minimum value of the potential being 2

√
ab.
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A rival to the
oscillator

A simple trick

Surprise 1:
Period is
independent
of b!

The potential is symmetric in x and hence has two minima in the full
range −∞< x < ∞; but we shall confine our attention to the range x > 0.
By shifting the origin suitably we can make the potential in this range to
look like the one in Fig. 9.1. For any finite energy, a particle will execute
periodic oscillations in this potential. It turns out that the period of oscil-
lation in this potential is independent of the amplitude just as in the case
of a harmonic oscillator potential! So clearly, a harmonic oscillator is not
unique in having this property.

There are several ways to prove this result. The most difficult one in-
volves evaluating the integral in Eq. (9.2) with V (x) given by Eq. (9.4).
The cutest procedure is probably the following. Consider a particle mov-
ing, not in one dimension but in two (say in the xy plane), under the action
of a two dimensional harmonic oscillator potential

V (x,y) =
1
2

mω2(x2 + y2) . (9.5)

Clearly, under the influence of such a potential, the particle will oscillate
with a period which is independent of its energy. Now consider the same
problem in polar coordinates instead of Cartesian coordinates. The con-
servation of energy now gives

E =
1
2

m(ẋ2 + ẏ2)+
1
2

mω2(x2 +y2) =
1
2

m(ṙ2 + r2θ̇ 2)+
1
2

mω2r2 . (9.6)

Using the fact that for such a motion — under the central force V (r) ∝ r2

— the angular momentum J = mr2θ̇ is conserved, this expression can be
rewritten in the form

E =
1
2

mṙ2 +
1
2

mω2r2 +
1
2

J2

mr2 =
1
2

mṙ2 +Ar2 +
B
r2 , (9.7)

with A = (1/2)mω2,B = J2/2m. Mathematically, this is identical to the
problem of a particle moving in one dimension under the action of a po-
tential of the form in Eq. (9.4). But we know by construction that the
period of oscillation does not depend on the conserved energy E in the
case of Eq. (9.7). It follows that the potential in Eq. (9.4) must also have
this property.

Since the potential in Eq. (9.4) depends on two parameters a and b you
might have thought that the frequency of oscillation ω0 will also depend
on both a and b. The first surprise is that ω0 = 2(2a/m)1/2 which is inde-
pendent of b! This result is most easily found by using the fact that — be-
cause the frequency is independent of the amplitude — it must be the same
as that for very small oscillations near the minimum. Near the minimum
at xm = (b/a)1/4, the potential has the form V (x) = 2

√
ab+ 4a(x− xm)

2

leading to the above result.
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Surprise 2: But
you can’t get it by
setting b = 0!

Isochronous
potentials,
defined

New potential
from the old

Worked out example

Next, once you are told ω0 is independent of b, you might think it
must be the value for the potential obtained by setting b = 0, which is
(2a/m)1/2. The second surprise is that this guess is also not correct! This
is because, however small b may be, the potential does rise to infinity near
origin and the term (b/x2) dominates near x = 0. (You can think of this
as an infinite barrier at x = 0 in the limiting case which will double the
frequency and halve the period.) So the net effect of b is only to double
the frequency of oscillation from (2a/m)1/2 (when b = 0) to 2(2a/m)1/2

(when b �= 0).

Potentials like that of the harmonic oscillator, or the one in Eq. (9.4)
are called isochronous potentials, with the term referring to the property
that the period is independent of the amplitude. It is not difficult to see
that there are actually an infinite number of such potentials. In fact, for
every function T (E), one can construct an infinite number of potentials
V (x) such that Eq. (9.4) holds. We will now describe [35] an elementary
way to construct them.

We begin by noting that the period T (E) is determined by the integral
in Eq. (9.2), which is essentially the area under the curve (E −V (x))−1/2.
Consider a potential V1(x) for which the energy dependence of the period
is given by a function T (E). Let us now construct another potential V2(x)
by “shearing” the original potential V1(x) parallel to x−axis. This is done
by shifting the potential curve horizontally by an amount Δ(V ) at every
value of V using some arbitrary function Δ(V ). The only restriction on
the function Δ(V ) is that the resulting potential should be single valued
everywhere. A moment of thought shows that such a shift leaves the area
under the curve invariant and hence T (E) does not change. In other words,
given any potential V (x), there are infinite number of other potentials for
which you will get the same period-energy dependence T (E); each of
these potentials are determined by the choice of the ‘shearing’ function
Δ(V ).

In the case of a harmonic oscillator potential, the distance h(V ) be-
tween the two turning points (“width”) varies as

√
V when the potential is

measured from its minima. Since Eq. (9.4) has the isochronous property,
we would suspect that it is probably obtained from the harmonic oscil-
lator potential by a shearing motion keeping the width h(V ) varying as
(V −Vmin)

1/2. This is indeed true and we can demonstrate it as follows.
From Eq. (9.4), we can determine the inverse, double valued function x(V )
through the equation

ax4 +b−V x2 = 0 . (9.8)

If the roots of this equation are x2
1 and x2

2, we immediately have x2
1 + x2

2 =
V/a and x2

1x2
2 = b/a. Elementary algebra now gives

h(V )2 = (x1 − x2)
2 =

V
a
−2

√
b
a
. (9.9)
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Same result, from
algebra

Try it out!

What happens in
QM?

Or, equivalently,

h(V ) =
1√
a
(V −Vmin)

1/2 . (9.10)

This shows that the potential in Eq. (9.4) is indeed obtained by a shearing
of the harmonic oscillator potential.

If you do not like such a geometric argument, here is a more algebraic
derivation of the same result [36]. Let us suppose that we are given the
function T (E) and are asked to determine the potential V (x) which is
assumed to have a single minima and a shape roughly like the one in
Fig. 9.1. We can always arrange the coordinates such that the minimum
of the potential lies at the origin of the coordinate system. The shape of
the curve in the regions x > 0 and x < 0 will, of course, be different. In
order to maintain single valuedness of the inverse function x(V ), we will
denote the function as x1(V ) in the region x < 0 and x2(V ) in the region
x > 0. Once this is done, we can replace dx in the integral in Eq. (9.2) by
(dx/dV )dV . This allows us to write

T (E) =
√

2m
∫ E

0

[
dx2

dV
− dx1

dV

]
dV√
E −V

≡ 1
π

∫ E

0

dF
dV

dV√
E −V

, (9.11)

where F(V )≡ π
√

2m[x2(V )−x1(V )]. This is an integral equation (called
Abel’s integral equation) which, fortunately, can be inverted by a standard
trick. One can easily show that if

1
π

∫ t

a

d f
dx

dx√
t − x

= Q(t) , (9.12)

then
f (x)− f (a) =

∫ x

a
Q(t)

dt√
x− t

. (9.13)

Using this result and noting that, in our case, a = 0 and F(0) = 0, we get
the final result

x2(V )− x1(V ) =
1

π
√

2m

∫ V

0

T (E)dE√
V −E

. (9.14)

This result shows explicitly that the function T (E) can determine only the
“width” of the curve x2(V )− x1(V ). The family of curves which has the
same width will give rise to the same T (E) and vice-versa. The shear-
ing motion by which we transform one potential to another preserves this
width and hence the functional form of T (E).

So far, we have explored the classical properties of potentials in which
the period of oscillation of a particle is independent of the amplitude. A
natural question to ask will be whether these potentials exhibit any inter-
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The semi-classical
limit

Try it out for the
Hydrogen atom

esting behaviour in the quantum mechanical context. We will now look at
some quantum peculiarities [37] of the isochronous potentials.

In quantum theory, the potentials like the one in Fig. 9.1 will have a
set of discrete energy levels En. Formally inverting the function E(n) —
which is originally defined only for integral values of n — one can obtain
the inverse function n(E) for this system. This function essentially plays
the role analogous to T (E) in the case of quantum theory. We can now
ask whether one can determine the potential V (x) given the energy levels
En or, equivalently, the function n(E). It turns out that one can do this
fairly easily in the semi-classical limit corresponding to large n. To see
this, recall that the energy En of the n−th level of a quantum mechanical
system is given by the Bohr quantization condition

πn(E)	 1
h̄

∫ x2

x1

pdx =

√
2m
h̄2

∫ x2

x1

√
E −V dx . (9.15)

(To be precise the n in the left hand side should be [n−(1/2)], but we will
work with n; you can think of this as the n � 1 limit.) If we differentiate
both sides of this equation with respect to E, we get:√

2h̄2

m
dn
dE

=
1
π

∫ E

E0

dx
dV

dV√
E −V

, (9.16)

where E0 is the solution to the equation n′(E0) = 0, so that both sides
vanish at E = E0. Again using Eq. (9.12) and Eq. (9.13), we get:

x(V )− x(E0) =

√
2h̄2

m

∫ V

E0

dn
dE

dE√
V −E

=

√
2h̄2

m

∫ n(V )

n(E0)

dn√
V −E(n)

. (9.17)

The limits of integration are obtained by inverting the function E(n) to get
n(E) and substituting the values. This determines the form of the potential
V (x) — in terms of the inverse function x(V ) — such that in the semi-
classical limit it will have the energy levels given by the function E(n).

Though we obtained the above result for a one-dimensional motion
with a Cartesian x−axis, it is obvious that a similar formula should be ap-
plicable for energy levels in a spherically symmetric potential V (r) pro-
vided we only consider the zero angular momentum quantum states. As
a curiosity, consider the potential which will reproduce the energy lev-
els that vary as n−2, which — as we know — arises in the case of the
Coulomb problem:

En =−me4Z2

2h̄2n2
≡− C

n2 . (9.18)
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What! Semi-
classical result
is exact?!

In this case we can take E0 = −∞ since n′(−∞) = 0. This also gives the
lower limit on integration in Eq. (9.17) to be n(E0) = n(−∞) = 0 and
r(E0) = r(−∞) = 0. An elementary integration of Eq. (9.17) will give√

m
2h̄2 r(V ) =

∫ n(V )

0

ndn√
C+V n2

=
1
V
(V n2 +C)1/2∣∣n(V )

0 . (9.19)

The contribution from the upper limit vanishes since n2(V ) =−C/V and
the lower limit gives −√

C/V so that we get the result

r =−Ze2

V
; V (r) =−Ze2

r
, (9.20)

which, of course, we know is exact. This is one of the many curiosities in
the Coulomb problem — viz. the semi-classical result is actually exact —
and could be added to the list in Chapter 4. (However, we cheated a little
bit in this case; see Box 9.1)

Box 9.1: The Langer trick

The result obtained in Eq. (9.20) suggests that, if we calculate the
energy levels in the (−1/r) potential by the WKB approximation,
we get the correct result that En ∝ −(1/n2). But to do this, we have
implicitly set the angular momentum to zero and have looked at the
s−states of the atom. If we try to do this properly, we are in for a bit
of surprise.

We know that the radial Schrödinger equation for a central poten-
tial V (r) corresponding to the angular momentum eigenvalue �(�+1)
is given by

d2ψ�(r)
dx2 +

(
2m(E −V (r))

h̄2 − �(�+1)
r2

)
ψ�(r) = 0; ψ�(0) = 0 .

(9.21)

If we use the standard WKB quantization formula in Eq. (9.15) with
n replaced by (n−1/2) and the WKB momentum being

p(r) =
[

2m(E −V (r))− �(�+1)
h̄2

r2

]1/2

(9.22)

and V (r) =−Ze2/r, we find that the energy levels are given by If you do it right,
you get it wrong!

EWKB
p� =

−mZ2e4

2h̄2
{

n−1/2+[�(�+1)]1/2
}2 ; n = 1,2,3, . . . .

(9.23)
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In the semiclas-
sical limit, all
isochronous poten-
tials have equally
spaced energy levels

Rivaling the
harmonic
oscillator, again!

This is clearly wrong because it says energy levels depend on � and
are degenerate for every value of n! For � = 0 you get the correct
result for n � 1/2. The correct result should have only n2 in the de-
nominator.

Normally, one would have let it go at that saying WKB gives the
wrong result, except that Langer found an interesting way of getting
around this issue. What Langer did was to replace the WKB momen-
tum in Eq. (9.22) by an effective momentum given by

peff(r)≡
[

2m(E −V (r))−
(
�+

1
2

)2 h̄2

r2

]1/2

. (9.24)

That is, he replaced �(�+ 1) by [�+ (1/2)]2. This corresponds to
adding — out of the blue — a potential h̄2/(8mr2).Incredibly enough,A little cheating gets

the right result! if you use peff in the WKB formula you get the right result. It turns
out that this modification extends the validity of the WKB method
[38–40] for a wide class of potentials, regular or singular, attractive
or repulsive. There are, however, exceptions to this rule which makes
the situation either fascinating or unclear based on your point of view!

There is another interesting feature that arises in the quantum theory
related to isochronous potentials. It is well known that when we move
from classical to quantum mechanics, the harmonic oscillator potential
leads to equidistant energy levels. Curiously enough, all the isochronous
potentials have this property in the semi-classical limit. This is most easily
seen by differentiating Eq. (9.15) with respect to E and using Eq. (9.2) so
as to obtain

dn
dE

=
1
π

√
m

2h̄2

∫ x2

x1

dx√
E −V

=
T (E)
π h̄

. (9.25)

In other words, the quantum numbers are given by the equivalent formula

n(E)	 1
π h̄

∫
T (E)dE , (9.26)

which nicely complements the first equation in Eq. (9.15). If the potential
is isochronous, then T (E) = T0 is a constant independent of E and the
integral immediately gives the linear relation between E and n of the form
E = αn+β where α = (π h̄/T0). Clearly, these energy levels are equally
spaced just as in the case of harmonic oscillators.

In the case of the potential in Eq. (9.4), something more surprising
happens: The exact solution to the Schrödinger equation itself has equally
spaced energy levels! I will indicate briefly how this analysis proceeds
leaving out the algebraic details. To begin with, we can redefine the po-
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The last surprise

tential to the form

V (x) =
[

Ax− B
x

]2

; A2 ≡ a, B2 ≡ b , (9.27)

by adding a constant so that the minimum value of the potential is
zero at x = (B/A)1/2. The frequency of oscillations in this potential is
ω0 = (8a/m)1/2. To study the Schrödinger equation for the potential in
Eq. (9.27), it is convenient to introduce the usual dimensionless variables
ξ = (mω0/h̄)1/2 x, ε = 2E/(h̄ω0) and β = B(2m)1/2/h̄, in terms of which
the Schrödinger equation takes the form:

ψ ′′+

[
ε−

(
1
2
ξ − β

ξ

)2
]
ψ = 0 . (9.28)

As ξ →∞, the β/ξ term becomes negligible and — as in the case of stan-
dard harmonic oscillator — the wavefunctions will die as exp[−(1/4)ξ 2].
Near the origin, the Schrödinger equation can be approximated as ξ 2ψ ′′ ≈
β 2ψ which has solutions of the form ψ ∝ ξ s with s being the positive
root of s(s− 1) = β 2. We now follow the standard procedure and write
the wavefunction in the form ψ = φ(ξ )[ξ s exp(−(1/4)ξ 2)] and look for
power law expansion for φ of the form

φ(ξ ) =
∞

∑
n=0

cnξ n . (9.29)

Substituting this form into the Schrödinger equation will lead, after some
algebra, to the recurrence relation

cn+2

cn
=

n+ s− ε−β +(1/2)
(n+2)(n+2s+1)

. (9.30)

Asymptotically, this will lead to the behaviour cn+2/cn 	 (1/n) so that
φ(ξ ) 	 exp[(1/2)ξ 2] making ψ diverge unless the series terminates. So,
ε must be so chosen that the numerator of Eq. (9.30) vanishes for some
value of n. Clearly, only even powers of ξ appear in φ(ξ ) allowing us to
write n = 2k where k is an integer. Putting everything back, the energy of
the k−th level can be written in the form

Ek = (k+C)h̄ω0; C =
1
2

[
1−β +

(
β 2 +

1
4

)1/2
]
, (9.31)

showing that the energy levels are equally spaced with the width h̄ω0 but
with C replacing (1/2) in the case of harmonic oscillator.

Once again there are surprises in store for the limit of β = 0 when
we get C = 3/4; shouldn’t it be (1/2) in this limit? No. As in the classi-
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A cute conjecture
is killed by a cruel
counterexample

cal case, we have to imagine an infinite barrier at x = 0. If the barrier is
removed we get back the normal oscillator but with frequency (1/2)ω0.
(Recall that the isochronous potential leads to twice the frequency of the
b= 0 case.). The energy levels would have been (n+(1/2))(1/2)h̄ω0. But
the barrier at x = 0 requires the wavefunction to vanish there and hence
we can only have odd n eigenfunctions. If we set n = 2k+ 1 the energy
levels become [2k+(3/2)](1/2)h̄ω0 = [k+(3/4)]h̄ω0 which is the origin
of C = 3/4!

Do all isochronous potentials lead to evenly spaced energy levels as
exact solutions to Schrödinger equation rather than only in the asymptotic
limit? The answer is “no”. The simple counter-example is provided by two
parabolic wells connected together smoothly at the minima with V (x) =
(1/2)mω2

Rx2 for x≥ 0 and V (x) = (1/2)mω2
Lx2 for x≤ 0. It is obvious that

this potential is isochronous classically. Solving the Schrödinger equation
requires some effort because you need to ensure continuity of ψ and ψ ′
at the origin. This leads to a set of energy levels which need to be solved
numerically. One then finds that the energy levels are not equally spaced
but the departure from even spacing is surprisingly small. There is no
simple characterization of potentials which lead to evenly spaced energy
levels in quantum theory.
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10Logarithms of Nature

Most courses in electrostatics begin by studying the Gauss law and its
application to determine the electric fields produced by simple charge dis-
tributions. In this chapter, we revisit one of these problems, viz., the field
produced by an infinitely long, straight, line of charge with a constant
charge density. As usual, we will do it in a slightly different manner com-
pared to the text books and get ourselves all tied up in knots [41].

Consider an infinite straight line of charge located along the y−axis
with a charge density per unit length being λ . We are interested in deter-
mining the electric field everywhere due to this line charge. The standard
solution to this problem is very simple. We first argue, based on the sym-
metry, that the electric field at any given point is in the x− z plane and
depends only on the distance from the line charge. So we can arrange the
coordinate system such that the point at which we want to calculate the
field is at (x,0,0). If we now enclose the line charge by an imaginary con-
centric cylindrical surface of radius x and length L, the outward flux of the
electric field through the surface is 2πxLE which should be equal to (4π)
times the charge enclosed by the cylinder which is (4πLλ ). This imme-
diately gives E = (2λ/x). Dimensionally, the electric field is the charge
divided by the square of the length, and since λ is charge per unit length,
everything is fine.

We will now do it differently and in — what should be — an equivalent
way. We compute the electrostatic potential φ at (x,0,0) due to the line
charge along the y−axis and obtain the electric field by differentiating φ .
Obviously, the potential φ(x) can only depend on x and λ and must have
the dimension of charge per unit length. If we take φ ∼ λ nxm, dimensional
analysis immediately gives n = 1 and m = 0 so that φ(x) ∝ λ and is in-
dependent of x! The potential is a constant and the electric field vanishes!
We are in trouble.

Computation of the potential from first principles makes matters worse!
An infinitesimal amount of charge dq = λdy located between y and
y+dy will lead to an electrostatic potential dq/r at the field point where
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In electrostatics?!

A way-out, with
deeper meaning

r = (x2 + y2)1/2. So the total potential is given by

φ(x) = λ
∫ +∞

−∞
dy√

x2 + y2
= 2λ

∫ +∞

0

dy√
x2 + y2

. (10.1)

Changing variables from y to u = y/x, the integral becomes

φ(x) = 2λ
∫ +∞

0

du√
1+u2

. (10.2)

This result is clearly independent of x and hence a constant (which is what
dimensional analysis told us). Much worse, it is an infinite constant since
the integral diverges at the upper limit. What is going on in such a simple,
classic, textbook problem?

To get a sensible result, let us try cutting off the integral in Eq. (10.1)
at some length scale y = Λ . (You may think of the infinite line charge as
the limit of a line charge of length 2Λ withΛ � x.) Using the substitution
y = xsinhθ and taking the limit Λ � x we get

φ(x) = 2λ
∫ Λ

0

dy√
x2 + y2

= 2λ sinh−1
(
Λ
x

)
≈−2λ ln

( x
2Λ

)
, (10.3)

where we have used Λ � x in arriving at the final equality. This potential
does diverge when Λ → ∞. But note that the physically observable quan-
tity, the electric field EEE =−∇φ is independent of the cut-off parameter Λ
and is correctly given by Ex = 2λ/x. By introducing a cut-off, we seem to
have saved the situation.

We can now clearly see what is going on. As the title of this chapter
implies, the problem has to do with logarithms which allows a dimension-
less function like ln(x/2Λ) to slip into the electrostatic potential without
the electric field depending on the arbitrary scaleΛ . This requires additiv-
ity on the Λ dependence; that is, we need a function f (x/Λ) which will
reduce to f (x)+ f (Λ). Clearly, only a logarithm will do.

Once we know what is happening we can figure out other ways of get-
ting a sensible answer. One can, for example, obtain this result from a
more straightforward scaling argument by concentrating on the potential
difference φ(x)−φ(a) where a is some arbitrary scaling distance we in-
troduce into the problem. From dimensional analysis, it follows that the
potential difference must have the form φ(x)−φ(a) = λF(x/a) where F
is a dimensionless function. Evaluating this expression for a = 1, say, in
some units, we get λF(x) = φ(x)−φ(1). Substituting back, we have the
relation φ(x)− φ(a) = φ(x/a)− φ(1). This functional equation has the
unique solutions φ(x) = A lnx+ φ(1). Dimensional analysis again tells
you that A ∝ λ but, of course, scaling arguments cannot determine the
proportionality constant. However, one can compute the potential differ-
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ence by the explicit integral

φ(x)−φ(a) = 2λ
∫ ∞

0
dy

(
1√

x2 + y2
− 1√

a2 + y2

)
. (10.4)

We can easily see that this integral is finite. A fairly straightforward cal-
culation leads to:

φ(x)−φ(a) =−2λ ln(x/a) . (10.5)

The numerical value of φ(x) in this expression is independent of the length
scale a introduced in the problem. In that sense the scale of φ is deter-
mined only by λ which, as we said before, has the correct dimensions.
But to ensure finite values for the expressions, we need to introduce an
arbitrary length scale a which is the key feature I want to emphasize in
this discussion.

It turns out that such phenomena, in which naive scaling arguments
break down due to the occurrence of the logarithmic function, is a very
general feature in several areas of physics especially in the study of the
renormalization group in high energy physics. What we have here is a
very elementary analogue of this result. In all these cases, we introduce a
length scale into the problem to make some unobservable quantities (like
the potential) finite but arrange matters such that observable quantities
remain independent of this scale which we throw in.

If you thought this was too simple, here is a more sophisticated occur-
rence of a logarithm for similar reasons.

Consider the Schrödinger equation in two dimensions for an attractive
Dirac delta function potential V (xxx) = −V0δ (xxx) with V0 > 0. The vector
xxx is in two dimensional space, and we look for a stationary bound state
wavefunction ψ(xxx) which satisfies the equation

(
− h̄2

2m
∇2 −V0δ (xxx)

)
ψ(xxx) =−|E|ψ(xxx) , (10.6)

where −|E| is the negative bound state energy. We rescale the variables
by introducing λ = 2mV0/h̄2 and E = 2m|E|/h̄2, so that this equation
reduces to (

∇2 +λδ (xxx)
)
ψ(xxx) = Eψ(xxx) . (10.7)

Everything up to this point could have been done in any spatial dimen-
sion. In D−dimensions, the Dirac delta function δ (xxx) has the dimension
L−D. The kinetic energy operator ∇2, on the other hand, always has the
dimension L−2. This leads to a peculiar behaviour when D = 2. We find
that, in this case, λ is dimensionless while E has the dimension of L−2.
Since the scaled binding energy E has to be determined entirely in terms
of the parameter λ , we have a serious problem in our hands. There is no
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way we can determine the form of E without a dimensional constant —
which we do not have!

We now solve Eq. (10.7) to see the manifestation of this problem more
clearly. This is fairly easy to do by Fourier transforming both sides and
introducing the momentum space wavefunction φ(kkk) by

φ(kkk) =
∫

d2xxxψ(xxx)exp(−ikkk · xxx) . (10.8)

The left hand side of Eq. (10.7) leads to the term [−k2φ(kkk)+λψ(0)] while
the right hand side gives E φ(kkk). Equating the two, we get:

φ(kkk) =
λψ(0)
k2 +E

. (10.9)

We now integrate this equation over all kkk. The left hand side will then give
(2π)2ψ(0) which can be canceled out on both sides because ψ(0) �= 0.
(This is, of course, needed for φ(kkk) in Eq. (10.9) to be non-zero.) We then
get the result

1
λ

=
1

4π2

∫ d2kkk
k2 +E

=
1

4π2

∫ d2sss
s2 +1

. (10.10)

The second equality is obtained by changing the integration variable to
sss = kkk/

√
E . This equation is supposed to determine the binding energy E

in terms of the parameter in the problem λ but the last expression shows
that the right hand side is independent of E ! This is similar to the situa-
tion in the electrostatic problem in which we got the integral in Eq. (10.2)
which was independent of x. In fact, just as in the electrostatic case, the in-
tegral on the right hand side diverges, confirming our suspicion. Of course,
we already know that determining E in terms of λ is impossible due to
dimensional mismatch.

One can, at this stage, take the point of view that the problem is sim-
ply ill-defined and one would be quite correct. The Dirac delta function,
in spite of the nomenclature, is strictly not a function but is, what mathe-
maticians will call, a distribution. It is defined as a limit of a sequence of
functions. For example, suppose we consider a sequence of potentials

V (xxx) =−V0

[
1

2πσ2 exp(−|xxx|2/2σ2)

]
, (10.11)

where xxx is a 2D vector and σ is a parameter with the dimension of length.
In this case, we will again get Eq. (10.7) but with the Dirac delta function
replaced by the Gaussian in the square brackets in Eq. (10.11). But now
we have a parameter σ with the dimensions of length and one can imagine
the binding energy being constructed out of this. When we take the limit
σ→0, the potential in Eq. (10.11) reduces to a Dirac delta function. This is
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what is meant by saying that the delta function is defined as a limiting case
of sequence of functions. Here, the functions are Gaussians in Eq. (10.11)
parametrized by σ . When we take the limit of σ → 0 the function reduces
to the delta function. The trouble is that, when we let σ go to zero, we lose
the length scale in the problem and we do not know how to fix the binding
energy. Of course, there is no assurance that if one solves a differential
equation with an input function V (xxx;σ) which depends on a parameter σ
and take a somewhat dubious limit of σ → 0, the solutions will have a
sensible limit. So one can say that the problem is ill-defined.

Rather that leaving it at that, we can attempt something similar to what
we did in the electrostatic case. Evaluating the integral in Eq. (10.10) with
a cut-off at some value kmax =Λ with Λ 2 � E , we get

1
λ

=− 1
4π

ln
(

E

Λ 2

)
, (10.12)

which can be inverted to give the binding energy to be:

E =Λ 2 exp(−4π/λ ) , (10.13)

where the scale is fixed by the cut-off parameter. Of course this is similar
to what we would have got if we actually used a potential with a length
scale.

One way of interpreting this result is by taking a clue from what is done
in quantum field theory. The essential idea is to accept up front that the
theory requires an extra scale with proper dimensions for its interpretation.
We then treat the coupling constant as a function of the scale at which
we probe the system. Having done that, we arrange matters so that the
observed results are actually independent of the scale we have introduced.
In this case, we will define a physical coupling constant by

λ−1
phy(μ) = λ−1 − 1

4π
ln(Λ 2/μ2) =− 1

4π
ln
(

E

μ2

)
, (10.14)

where μ is an arbitrary but finite scale. Obviously λphy(μ) is independent
of the cut-off parameter Λ . The binding energy is now given by

E = μ2 exp(−4π/λphy(μ)) , (10.15)

which, in spite of appearance, is independent of the scale μ . This is similar
to our Eq. (10.5) in the electrostatic problem, in which we introduced a
scale a but φ(x) was independent of a.

In quantum field theory, the above result will be interpreted as fol-
lows: Suppose one performs an experiment to measure some observable
quantity (like the binding energy) of the system as well as some of the
parameters describing the system (like the coupling constant). If the ex-
periment is performed at an energy scale corresponding to μ (which, for
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example could be the energy of the particles in a scattering cross-section
measurement, say), then one will find that the measured value of the cou-
pling constant depends on μ . But when one varies μ in an expression like
Eq. (10.15), the variation of λphys will be such that one gets the same value
for E .

When you think about it, it does make lot of sense. After all, the pa-
rameters we use in our equations (like λphy) as well as some of the results
we obtain (like the binding energy E ) need to be determined by suitable
experiments. In the quantum mechanical problems one can think of scat-
tering of a particle with momentum k (represented by an incident plane
wave, say) by a potential. The resulting scattering cross-section will con-
tain information about the potential, especially the coupling constant λ .
If the scattering experiment introduces a (momentum or length) scale μ ,
then one can indeed imagine the measured coupling constant to be de-
pendent on that scale μ . But we would expect physical predictions of the
theory (like E ) to be independent of μ . This is precisely what happens in
quantum field theory and the toy model above is a simple illustration.

It is fairly straightforward to see how all these comes about in the case
of scattering in the 2-dimensional Dirac delta function potential. The anal-
ysis is very similar to what was done above and the formalism uses the
scattering theory developed in Chapter 4. Let me briefly indicate the key
results.

When we study scattering solutions to the Schrödinger equation, we
take E ≡ k2/2m > 0 in contrast to the bound state problems in which we
assume E =−|E|< 0. If you now carry through the analysis similar to the
one done above, you will easily find that a scattering state wavefunction
will be given by

ψkkk(xxx) = eikkk···xxx +λψkkk(000)G(xxx) , (10.16)

where G(xxx) is the 2-dimensional Green’s function given by

G(xxx) =
∫ d2 ppp

(2π)2
eippp···xxx

ppp2 − kkk2 − iε
, (10.17)

which can be expressed in terms of the zero-th order Hankel function.
Evaluating Eq. (10.16) at the origin now leads to the consistency condition

ψkkk(000) =
1

1−λG(000)
, (10.18)

which again lands us in trouble because G(000) is logarithmically divergent.
As in the previous case, let us evaluate the integral in Eq. (10.17) with a
cut-off at |ppp| ≤ μ . This will lead to

G(000) =
1

4π
ln
(

μ2

−k2

)
. (10.19)
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Using Eq. (10.18) and Eq. (10.19) in Eq. (10.16) and using the asymptotic
expansion of the Hankel function,

H1
0 (kr)→

(
2

iπkr

)1/2

eikr (kr → ∞) , (10.20)

you can easily determine the scattering amplitude f (θ) to be

f (θ) =
√

2
πk

[
1
λ
− 1

4π
ln
(
μ2

k2

)
− i

4

]−1

. (10.21)

We now see that, if we analytically continue to negative energies by the
replacement k → ik, then f (θ) possess a pole at

k2
phy = μ2 exp

(
−4π

λ

)
= E , (10.22)

which is precisely the bound state energy we obtained in Eq. (10.15). This
agrees with the general result in quantum mechanics that the poles of the
scattering amplitude at imaginary values of k occur at the bound state
energies. More importantly, the scattering cross section is now given by

dσ
dθ

= | f (θ)|2 = 2
πk

[
1+

1
π2 ln2

(
k2

E

)]−1

, (10.23)

which depends on the regularized bound state energy E . Suppose we de-
termine the scattering cross section at the value of k given by k = μ . This
will allow us to determine the physical coupling constant λphy(k) using
Eq. (10.15). This coupling constant will “run” with the energy scale k at
which the scattering experiment is performed but this dependence will be
such that the bound state energy E remains constant.

From Eq. (10.7) it can be seen that, in D = 1, the coupling constant λ
has the dimensions of L−1 so there is no difficulty in obtaining E ∝ λ 2.
The one dimensional integral corresponding to Eq. (10.10) is convergent
and you can easily work this out to fix the proportionality constant to be
1/4. The logarithmic divergence occurs in D=2 which is known as the
critical dimension for this problem. The breaking down of naive scaling
arguments and the appearance of logarithms are rather ubiquitous in such
a case. (There are other fascinating issues in D ≥ 3 and in the scattering
by potentials but that is another story.) The examples discussed here are
all explored extensively in the literature and a good starting point will be
Refs. [42–47].
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The simplest problem in gravity deals with the description of the gravi-
tational field produced by a spherically symmetric distribution of matter
around it. In Newtonian gravity, we will describe it using a gravitational
potential which falls as (−1/r) everywhere outside the body. In Einstein’s
theory, one describes gravity as due to the curvature of spacetime. So, to
understand, say, the effects of general relativity in the solar system, we
need to determine the spacetime geometry around the Sun. The rigorous
way of doing this is to solve Einstein’s field equations in this specific con-
text. How would you like to get this key result of general relativity rather
cheaply?

In this chapter, we will discuss how this important result of general
relativity, viz. the description of the gravitational field around a spherical
massive body, can be obtained using just the concepts of special relativ-
ity [48, 49]. This curious fact allows you to explore a host of physical
phenomena including some aspects of black hole physics. The derivation
works only for a special class of spherically symmetric models — for rea-
sons which are not completely clear — but considering how easy it is, it
deserves to be known much better.

We start with the fact that general relativity describes gravity as due
to the curvature of spacetime. The difference between a flat space and a
curved space is encoded in the generalization of Pythagoras theorem for
infinitesimally separated points. For example, a flat 2-dimensional surface
(say, a plain sheet of paper) allows us to introduce the standard Cartesian
coordinates (x,y) such that the distance between infinitesimally separated
points can be expressed in the form dl2 = dx2 + dy2 which, of course,
is just the standard Pythagoras theorem. In contrast, consider the two di-
mensional surface on a sphere of radius r on which we have introduced
two angular coordinates (θ ,φ ). The corresponding formula will now read
dl2 = r2dθ 2+r2 sin2 θ dφ 2. It is not possible to introduce any other set of
coordinates on the surface of sphere such that this expression — usually
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called the line interval — reduces to the Pythagorean form. This is the
difference between a curved space and a flat space.

Move on from space to spacetime and from points to events. In the flat
spacetime, in which we use in special relativity, the “Pythagoras theorem”
generalizes to the form

ds2 =−c2dt2 +dx2 +dy2 +dz2 . (11.1)

The spatial coordinates appear in the standard form and the inclusion of
time introduces the all important minus sign. But one can live with it and
treat it as a generalization of the formula dl2 = dx2+dy2 to 4-dimensions
(with an extra minus sign). But in a curved spacetime, this expression will
not hold and the coordinate differentials like c2dt2,dx2 etc. in the interval
will get multiplied by functions of space and time. This is just like we
using sin2 θ dφ 2 rather than just dφ 2 to describe the curved 2-dimensional
surface of a sphere. The precise manner in which such a modification oc-
curs is determined by Einstein’s equation and depends on the distribution
of matter in spacetime. Our aim is to find the spacetime around a massive
body by using a trick.

Box 11.1: Why is gravity just geometry?

There are three ingredients which lead to the fascinating result that
the effects of gravity must be represented in terms of curved space-
time geometry. The first is the principle of equivalence which tellsThe three key

ingredients you that in a sufficiently small region of spacetime you cannot distin-
guish the effects of gravity from those produced by a suitable accel-
erated frame (see text). The second is the well known result in special
relativity, namely, moving clocks run slower compared to stationary
ones. Combining these two, one can show that gravitational potential
affects the rate of clocks. The final ingredient is the requirement that
our description should be valid in any arbitrary coordinate system be-
cause one can no longer distinguish effects of gravity from those of
accelerated frame, locally. Let me fill in the details of this argument.

Consider a disc rotating with angular velocity Ω about an axis
running through the center perpendicular to the disc. Keep one clock
at the center of the disc (which does not move) and another at a radius
r which moves with a constant speed v = Ωr. Special relativity tells
you that when the clock at the origin shows a lapse of time Δ t(0),
the clock at radius r will show a lapse of time Δ t(r) given by (see
Eq. (2.40)):

Δ t(r) = Δ t(0)
(

1− v2

c2

)1/2

= Δ t(0)
(

1− Ω 2r2

c2

)1/2

. (11.2)
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Someone sitting with the clock at r in a closed cabin will feel the
centrifugal acceleration, Ω 2r which she cannot distinguish from a
gravitational acceleration arising from a gravitational potential φ
such that −∂φ/∂ r = Ω 2r; this leads to a gravitational potential Gravity affects flow

of timeφ = −(1/2)Ω 2r2. Using principle of equivalence we can now re-
express Eq. (11.2) as

Δ t(φ) = Δ t(0)
(

1+
2φ
c2

)1/2

. (11.3)

This result tells you that the flow of time depends on the gravitational
potential at which the clock is located. If this does not hold, either
principle of equivalence or special relativity should fail!

We next note that the line interval in special relativity is of the
form ds2 = −c2dt2 + dxxx2. Any clock at rest anywhere in space has
the worldline dxxx = 0 and all such clocks will measure the proper time
dτ ≡ ds/c = dt. This, of course, contradicts the result in Eq. (11.3) From flat to curved
and hence we need to modify the line interval of special relativity in
the presence of a gravitational field. The simplest modification which
will take care of the effect of gravity on the clock will be to change
ds2 to the form

ds2 =−c2dτ2 =−
(

1+
2φ
c2

)
c2dt2 +dxxx2 . (11.4)

Stationary clocks with dxxx = 0 will now show a time lapse in accor-
dance with Eq. (11.3) which will depend on the potential they are
located at.

There is a beautiful way of verifying whether we are on the right
track. We know that the action for a particle in special relativity is A cross-check
given by (see Chapter 2)

A =−mc2
∫

dτ . (11.5)

Principle of equivalence tells you that in any local region you can go
to the freely falling frame in which the special relativity should hold.
Therefore, in the presence of a weak gravitational field the action for
a particle must have the same form as Eq. (11.5) with dτ given by
the expression in Eq. (11.4). If you work it out, to the lowest order in
(1/c2) — which is necessary because everything we did is only valid
for weak gravitational fields described by a Newtonian potential —
we find that

A = −mc2
∫

dτ =−mc2
∫

dt
[

1+
2φ
c2 − v2

c2

]1/2

∼= −mc2
∫

dt
[

1− 1
2

v2

c2 +
φ
c2

]
. (11.6)
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ple of equivalence

But this is equivalent to using the Lagrangian

L =−mc2 +
1
2

mv2 −mφ , (11.7)

which, except for the constant (−mc2), is precisely what you would
have written down for a particle in a Newtonian gravitational poten-
tial!

So you see that the Lagrangian for a particle in a gravitationalWhy is the
Lagrangian K −V
in a gravitational
field?

field has the strange form, of kinetic energy minus potential energy,
because gravity affects the rate of flow of clocks; there is no other
good reason for this strange combination. (The innocuous looking
constant (−mc2) in Eq. (11.7) has interesting consequences which
we will explore in Chapter 15.) We conclude that, in the presence of
a weak gravitational field, the form of ds2 must get modified, at least
as regards the g00 component.

But we know that the operational definition of spatial distances
will use constancy of speed of light and the measurement of clock
rates. This means even the spatial length interval will get affected by
the gravitational field requiring the modification of all the compo-
nents of gab from the special relativistic form of ηab. (This effect is
not captured in the above analysis because we were working at the
lowest order in (1/c2); then c2dt2 dominates over dxxx2.) It turns out
that, for a proper description of gravity, you actually need to go be-
yond the description by a single gravitational potential and use all the
ten components of gab. That will lead you to a curved spacetime.

For this, we will begin with a simple idea which you probably know.
Gravity obeys the principle of equivalence. Consider, for example, a small
box (‘Einstein’s elevator’) which is moving in intergalactic space, away
from all material bodies, in some direction (“up”) with a uniform acceler-
ation g. We will assume that it is propelled by the rocket motors attached
to its bottom. Let us compare the results of any physical experiment per-
formed inside such an elevator with those performed inside a similar box
which is at rest on Earth’s surface where the gravitational acceleration is
g. The principle of equivalence tells you that the results of all physical
experiments will be the same in these two cases; that is, you cannot dis-
tinguish gravity from an accelerated frame within any sufficiently small
region.

An immediate consequence of this principle is that you can make grav-
ity go away, within any small region of space, by choosing a suitable
frame of reference usually called the freely falling frame. For example,
if you jump off from the twentieth floor of a building you will feel com-
pletely weightless (‘zero gravity’) until you crash to the ground. In such a
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v dT

Fig. 11.1: The relation between the freely falling and static coordinate frames around a
spherically symmetric body. The thick lines indicate (Xin,Yin) axes of the freely falling
inertial frame. The thin lines denote the corresponding axes of a static coordinate sys-
tem glued at a fixed point. (Of course, the figure is not to scale and the coordinate sys-
tems are supposed to be infinitesimal in extent!). The radial displacement between the
two frames is by the amount vr(r)dT during an infinitesimal time interval dT . Through
every event there is a different freely falling frame related in a definite way to the fixed
static frame. The freely falling and static frames coincide at very large distance from
the body.

Introduce freely-
falling-frames
around a massive
body

freely falling frame, one can use the laws of special relativity without any
problem since gravity is absent.

We want to use this idea to describe the gravitational field of a spheri-
cally symmetric body located about the origin. Consider a body of radius
R and let us study its gravitational field in the empty space around it (at
r > R). Let P be a point at a distance r from the origin. If we consider
a small box around P which is freely falling towards the origin, then the
metric in the coordinates used by a freely falling observer in the box will
be just that of special relativity:

ds2 =−c2dt2
in +drrr2

in . (11.8)

This is because, in the freely falling frame, the observer is weightless and
there is no effective gravity. (The subscript ‘in’ tells you that these are
inertial coordinates.) Let us now transform the coordinates from the iner-
tial frame to a frame (T,rrr) which will be used by observers who are at
rest around the point P. Suppose the freely falling frame is moving with a
radial velocity vvv(r) around P. To determine this velocity, we can imagine
that the freely falling frame started from very large distance from the body
with zero velocity at infinity. Then, a simple Newtonian analysis shows
that its velocity at P will be vvv(r) =−r̂rr

√
2GM/r. We now transform from

the freely falling inertial frame to the static frame of reference which is
glued to the point P using the non-relativistic transformations dtin = dT,
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The final result

drrrin = drrr − vvvdT between two frames which move with respect to each
other with a relative velocity vvv. Of course, you have to use infinitesi-
mal quantities in this transformation because you need different freely
falling inertial frames at different points, in a non-uniform gravitational
field. Also note that drrrin is not an exact differential; you cannot integrate
drrrin = drrr− vvvdT to get a coordinate rrrin.

What we require is the form of the line element in Eq. (11.8) in terms
of the static coordinates. Substituting the transformations in Eq. (11.8),
we find the metric in the new coordinates to be

ds2 =−
[

1− 2GM
c2r

]
c2dT 2 +2

√
(2GM/r)drdT +drrr2 . (11.9)

Incredibly enough, this turns out to be the correct metric describing
the spacetime around a spherically symmetric mass distribution of total
mass M!

As it stands, this line element is not in “diagonal” form in the sense
that it has a non-zero drdT term. It will be nicer to have the metric in
diagonal form. This can be done by making a coordinate transformation
of the time coordinate (from T to t) in order to eliminate the off-diagonal
term. We look for a transformation of the form T = t +Q(r) with some
function Q(r). This is equivalent to taking dT = dt +K(r)dr with K =
dQ/dr. Substituting for dT in Eq. (11.9) we find that the off-diagonal
term is eliminated if we choose K(r) =

√
2GM/c4r(1−2GM/c2r)−1. In

this case, the new time coordinate is:

t =
∫

dT +
1
c2

∫
dr

√
(2GM/r)

(1− 2GM
c2r )

. (11.10)

The integral in the second term is elementary and working it out you will
find that

ct = cT −
[√

8GMr
c2 − 4GM

c2 tanh−1

√
2GM
c2r

]
. (11.11)

What is more important for us is the final form of the line interval in
Eq. (11.9) expressed in the static coordinates with the new time coordinate
t. This is given by

ds2 =−
(

1− 2GM
c2r

)
c2dt2+

(
1− 2GM

c2r

)−1

dr2+r2 (dθ 2 + sin2 θdφ 2) .
(11.12)

Some of you might be familiar with this metric, called the Schwarzschild
metric, which is used extensively both in the study of general relativistic
corrections to motion in the solar system and in black hole physics.
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Once we have the form of this metric, one can do several things with
it using just special relativistic concepts. One simple, but very significant,
result which you can obtain immediately is the following. Let us consider
a clock which is sitting quietly at some fixed location in space so that,
along the clock’s worldline, dr = dθ = dφ = 0. Substituting these into
Eq. (11.12) we get the proper time shown by such a clock to be

dτ =
[

1− 2GM
c2r

]1/2

dt ≡
√
|g00(r)|dt , (11.13)

when the coordinate clock time changes by an amount dt. It is obvious
from this relation that dτ → dt when r → ∞. That is, one can think of t as
the proper time measured by a clock located far away from the gravitating
body.

Consider now an electromagnetic wave train having N crests and
troughs which is traveling radially outward from some point xxx to an in-
finite distance away from the central body. An observer located near xxx can
measure the frequency of the wave train by measuring the time Δτ it takes
for the N troughs to cross her and using the result ω =N/Δτ . An observer
at large distances will do the same using her clocks. Since the frequency
of radiation ω(xxx) measured by local observers, as the radiation propa-
gates from event to event in a curved spacetime, is inversely related to the
time measured by the local clock, it follows that ω(xxx) ∝ [|g00(xxx)|]−1/2.
If g00 ≈ −1 at very large distances from a mass distribution, then the
frequency of radiation measured by an observer at infinity (ω∞) will be
related to the frequency of radiation emitted at some point xxx by

ω∞ = ω(xxx)
√
|g00(xxx)| . (11.14)

Another use of this metric is to study orbits of particles around a mas-
sive body. The formal way of doing this is to use the Hamilton-Jacobi
equation, gab∂aS∂bS =−m2c2, introduced in Chapter 2. If you solve for S
in the spacetime with the metric in Eq. (11.12), you can get the trajectories
by the usual procedure of constructive interference. But we will follow a
different procedure which will emphasize the power of the principle of
equivalence.

To obtain this result, let us begin with the trajectory of a particle in
special relativity under the action of a central force. The angular mo-
mentum JJJ = rrr× ppp is still conserved but the momentum is now given by
ppp= γmvvv with γ ≡ [1−(v2/c2)]−1/2. So the relevant conserved component
of the angular momentum is J = mr2(dθ/dτ) = γmr2(dθ/dt) and not
mr2(dθ/dt). (This, incidentally, means that Kepler’s second law regard-
ing areal velocity does not hold in special relativistic motion in a central
force in terms of the coordinate time t.) Consider now the motion of a free
special relativistic particle described in polar coordinates. The standard



124 11 Curved Spacetime for pedestrians

Try it out

Orbits in GR

relation E2 = ppp2c2 +m2c4 can be manipulated to give the equation

E2

c2

(
dr
dt

)2

= E2 −
(

J2c2

r2 +m2c4
)

. (11.15)

(This is still the description of a free particle moving in a straight line
but in the polar coordinates!) Since special relativity must hold around
any event, we can obtain the corresponding equation for general relativis-
tic motion by simply replacing dr, dt by the proper quantities

√|g11|dr,√|g00|dt and the energy E by E/
√|g00| (which is just the redshift ob-

tained above) and J =mr2(dθ/dt) to J =mr2(dθ/
√|g00|dt) in this equa-

tion. This gives the equation for the orbit of a particle of mass m, energy
E and angular momentum J around a body of mass M. With some simple
manipulation, this can be written in a suggestive form as:

(
1− 2GM

c2r

)−1 dr
dt

=
c
E

[
E2 −V 2

eff(r)
]1/2

(11.16)

with an effective potential:

V 2
eff(r) = m2c4

(
1− 2GM

c2r

)(
1+

J2

m2r2c2

)
. (11.17)

You can now work out various features of general relativistic orbits ex-
actly as you do it in standard Kepler problem (see e.g., Chapter 25 of [50]).
And the above derivation clearly shows that the particle is essentially fol-
lowing special relativistic, free particle motion at any event, in the locally
inertial coordinates! (This is again a case of general relativity for the price
of special relativity!)

For practical purposes, it is useful to rewrite Eq. (11.16) as a
differential equation for r(θ). Noting that the expression for conserv-
ed angular momentum will also change from J = mr2(dθ/dt) to
J = mr2(dθ/

√|g00|dt) and manipulating these equations, it is easy to
obtain an expression for dr/dθ . Differentiating this result will give the
equation for the orbit in the standard form:

d2u
dθ 2 +u =

GMm2

J2 +
3GM

c2 u2 . (11.18)

The first term on the right hand side is purely Newtonian (see Eq. (3.42))
and the second term is the correction from general relativity. The ratio of
these two terms is (J/mrc)2 ≈ (v/c)2 where r and v are the typical radius
and speed of the particle.

This correction term changes the nature of the orbits in two ways. First,
it changes the relationship between the parameters of the orbit and the en-
ergy and angular momentum of the particle. More importantly, it makes
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The precession,
again!

the elliptical orbit of Newtonian gravity to precess slowly which is of
greater observational importance. The exact solution to Eq. (11.18) can
be given only in terms of elliptic functions and hence is not very use-
ful. An approximate solution to Eq. (11.18), however, can be obtained
fairly easily when the orbit has a very low eccentricity and is nearly cir-
cular (which is the case for most planetary orbits). Then the lowest order
solution will be u = u0 = constant and one can find the next order cor-
rection by perturbations theory. This can be done without assuming that
2GMu0/c2 = 2GM/c2r0 is small, so that the result is valid even for orbits
close to the Schwarzschild radius, as long as the orbit is nearly circular.

Let the radius of the circular orbit be r0 for which u = (1/r0) ≡ k0.
For the actual orbit, u = k0 +u1 where we expect the second term to be a
small correction. Changing the variables from u to u1, where u1 = u− k0,
Eq. (11.18) can be written as

u′′1 +u1 + k0 =
GMm2

J2 +
3GM

c2

(
u2

1 + k2
0 +2u1k0

)
. (11.19)

We now choose k0 to satisfy the condition

k0 =
GMm2

J2 + k2
0

3GM
c2 , (11.20)

which determines the radius r0 = 1/k0 of the original circular orbit in
terms of the other parameters. Now the equation for u1 becomes

u′′1 +
(

1− 6k0GM
c2

)
u1 =

3GM
c2 u2

1 . (11.21)

This equation is exact. We shall now use the fact that the deviation from
circular orbit, characterized by u1 is small and ignore the right hand side
of equation Eq. (11.21). Solving Eq. (11.21), with the right hand side set
to zero, we get

u1 ∼= Acos

[(
1− 6GM

c2r0

)1/2

θ

]
. (11.22)

We see that r does not return to its original value at θ = 0 when
θ = 2π indicating a precession of the orbit. We encountered the same
phenomenon in the case of motion in a Coulomb field as well in Chap-
ter 3. As described in that context, the argument of the cosine function
becomes 2π when

θc ≈ 2π[1− (6GM/c2r0)]
−1/2 , (11.23)

which gives the precession (θc−2π) per orbit. We can make a naive com-
parison between this precession rate and the corresponding one in the
Coulomb problem by noticing that, in the latter case, we can substitute
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Quite different from
EM result

A curiosity

α = GMm and J2 = GMm2r0 [which follows from Eq. (3.47)] to obtain

ω2
el → 1− GM

c2r0
, (11.24)

which differs by a factor 6 in the corresponding term in general relativity.
If we attempt to reproduce the general relativistic results by an effective

Newtonian potential, then a comparison with Eq. (3.42) tells us that we
need to find a Veff which satisfies the equation

− m
J2

dVeff

du
=

GMm2

J2 +
3GM

c2 u2 , (11.25)

which integrates to give

Veff =−GMm
r

− GMJ2

mc2
1
r3 . (11.26)

The trouble with this effective potential is that it depends on the angu-
lar momentum J of the particle which is somewhat difficult to motivate
physically. But if you are willing to live with it, then one can introduce a
pseudo Newtonian description of the general relativistic Kepler problem
by taking the equations of motion to be m(d2xxx/dτ2) = FFF with

FFF =−r̂rr
GMm

r2

(
1+

3(r̂rr×uuu)2

c2

)
; uuu =

dxxx
dτ

, (11.27)

where τ is the proper time. You can convince yourself that the conserved
angular momentum now is JJJ = mxxx× uuu which will ensure that the above
force reproduces the correct relativistic orbit equation. Unfortunately, this
force law does not seem to lead to any other useful insight.
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For a taste of
history, see Box 12.1

Doppler shift, from
an unorthodox
approach

12Black hole is a Hot Topic

Classically, one thought of a black hole as a perfect absorber: Matter can
fall into it but nothing can come out of it. In the early seventies, Bekenstein
argued that this asymmetry can lead to the violation of second law of ther-
modynamics unless we associate an entropy with the black hole which is
proportional to its area. This association made black holes rather peculiar
thermodynamic objects. They were expected to possess an entropy and
energy (given by Mc2) but no temperature! This is because if black holes
have a non-zero temperature, then they have to radiate a thermal spectrum
of particles and this seemed to violate the classical notion that “nothing
can come out of a black hole”. Given the fact that we do not know of any
other system which possesses thermodynamic entropy and energy but not
a temperature, this definitely looked peculiar.

This puzzle was solved when, in the mid-seventies, Hawking discov-
ered that a black hole does have a temperature, when viewed from a quan-
tum mechanical perspective. A black hole which forms due to collapse of
matter will emit — at late times — a thermal radiation which is character-
ized by this temperature. The rigorous derivation of this result requires a
fair knowledge of quantum field theory but I will present, in this chapter,
a simplified derivation which captures its essence [51, 52].

We begin with a simple problem in special relativity but analyze it in
a slightly unconventional way. Consider an inertial reference frame S and
an observer who is moving at a speed v along the x-axis in this frame. If
her trajectory is x = vt then the clock she is carrying will show the proper
time τ = t/γ where γ = (1− v2/c2)−1/2. Combining these results we can
write her trajectory in parametrized form as

t(τ) = γτ ; x(τ) = γvτ . (12.1)

These equations give us her position in the spacetime when her clock
reads τ .
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Inertial motion

Suppose that a monochromatic plane wave, represented by the function
φ(t,x) ≡ exp−iΩ(t − x/c), exists at all points in the inertial frame. This
is clearly a plane wave of unit amplitude — as you will see soon, we
don’t care about the amplitude — and frequency Ω propagating along the
positive x-axis. At any given x, it oscillates with time as exp(−iΩ t) so Ω
is the frequency as measured in S. The moving observer, of course, will
measure how the φ changes with respect to her proper time. This is easily
obtained by by substituting the trajectory t(τ) = γτ ;x(τ) = γvτ into the
function φ(t,x) obtaining φ [τ]≡ φ [t(τ),x(τ)]. A simple calculation gives

φ [t(τ),x(τ)] = φ [τ] = exp [−iτΩγ(1− v/c)]

= exp−i

[
τΩ

√
1− v/c
1+ v/c

]
. (12.2)

Clearly, the observer sees a monochromatic wave with a frequency

Ω ′ ≡Ω

√
1− v/c
1+ v/c

. (12.3)

So an observer, moving with uniform velocity, will perceive a monochro-
matic wave as a monochromatic wave but with a Doppler shifted fre-
quency; this is, of course, a standard result in special relativity derived
in a slightly different manner.

Box 12.1: A little history

It all started with the theoretical discoveries in the seventies suggest-
ing an intimate connection between thermodynamics and black holes
with contributions from John Wheeler, Jacob Bekenstein, Stephan
Hawking, Paul Davies, Bill Unruh and many others.

It occurred to John Wheeler that, by throwing a hot cup of tea into
a black hole, he can hide the thermodynamic entropy of the tea for-
ever from the observers who cannot access information from inside
the black hole. This could allow a possible violation of second law of
thermodynamics and Wheeler posed this problem to Bekenstein, who
was at that time a graduate student [53]. Bekenstein came up with a
remarkable solution to this difficulty.

Bekenstein suggested that the black hole should be associated with
an entropy which is proportional to its area. When the cup of tea falls
into the black hole, it increases the black hole’s mass and size and
hence the surface area. Bekenstein argued that — if the black holes
have an entropy proportional to their area — then everything will be
fine. In fact, Hawking had shown earlier that the areas of black holes

Why black holes
must have entropy
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Accelerated motion

have a remarkable property: In any physical process involving normal
matter and black holes or several black holes, the sum of the surface
areas of the black holes can never decrease. This is very similar to the
behaviour of entropy in thermodynamics giving credence to the idea
of attributing an entropy to black holes which is proportional to the
area.

But there was a serious problem with Bekenstein’s idea which
made several physicists, including Hawking, believe that this is just a
mathematical analogy and that one cannot “really” attribute an en-
tropy to the black hole. Since black holes have a mass, they cer-
tainly have an energy proportional to mass. If we now attribute an
entropy proportional to the area (which will be proportional to the
square of the mass), then one must also attribute a non-zero tempera-
ture to the black holes (which is inversely proportional to their mass).
But if black holes have a non-zero temperature then they must radi-
ate while the prevailing notion was that nothing comes out of black
holes. Hence many physicists, originally refused to believe Beken- Analogy or Truth?
stein’s idea and in fact Bekenstein had a hard time convincing oth-
ers in the 1972 Les Houches summer school. (For a taste of history,
see [54].)

But very soon, Hawking’s own research showed that black holes
do radiate, as though they have a non-zero temperature, thereby mak-
ing everything consistent. Soon after, Paul Davies and Bill Unruh
independently showed that the result is, in fact, far more general
and occurs whenever a class of observers cannot receive informa-
tion from certain region of spacetime. Black holes are described by
just one kind of spacetimes in which this happens but the result is far
more general. The fact that thermal radiation and temperature arises
in these contexts illustrates yet again the power of mathematics which
can tell us more than what we have originally assumed!

The real fun begins when we use the same procedure for a uniformly
accelerated observer (sometimes called Rindler observer) along the x-
axis. If we know the trajectory t(τ),x(τ) of a uniformly accelerated ob-
server, in terms of the proper time τ shown by the clock she carries, then
we can determine φ [t(τ),x(τ)] = φ [τ] and repeat the previous analysis.
So we first need to determine the trajectory t(τ),x(τ) of a uniformly ac-
celerated observer in terms of the proper time τ . Remembering that the
equation of motion in special relativity is d(mγvvv)/dt = FFF , we can write
the equation of motion for an observer moving with constant acceleration
g along the x-axis as

d
dt

v√
1− v2/c2

= g . (12.4)
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Exponential
redshift

Calculate the power
spectrum ...

This equation is trivial to integrate since g is a constant. Solving for
v = dx/dt and integrating once again, we can get the trajectory to be a
hyperbola

x2 − c2t2 = c4/g2 , (12.5)

with suitable choices for the initial conditions. We also know from special
relativity that when a stationary clock registers a time interval dt, the mov-
ing clock will show a smaller proper time interval dτ =
dt[1− (v2(t)/c2)]1/2 where v(t) is the instantaneous speed of the clock.
Determining v(t) from Eq. (12.5), one can find the relation between t and
the proper time τ (as shown by a clock carried by the accelerated observer)
as:

τ =
∫ t

0
dt ′
√

1− v2(t ′)
c2 =

c
g

sinh−1
(gt

c

)
. (12.6)

Inverting this relation one can get t as a function of τ . Using Eq. (12.5)
we can then express x in terms of τ and get the trajectory of the uniformly
accelerated observer to be

x(τ) =
c2

g
cosh

(gτ
c

)
; t(τ) =

c
g

sinh
(gτ

c

)
. (12.7)

This is exactly in the same spirit as the trajectory in Eq. (12.1) for an iner-
tial observer except that we are now talking about a uniformly accelerated
observer.

We can now proceed exactly like in Eq. (12.2) to figure out how the
accelerated observer views the monochromatic wave. We get:

φ [t(τ),x(τ)] = φ [τ] = exp i
c
g
[Ω exp−gτ

c
] = exp iθ(τ) . (12.8)

Unlike in the case of uniform velocity, we now find that the phase θ(τ) of
the wave itself is decreasing exponentially with the proper time of the ob-
server. Since the instantaneous frequency of the wave is the time derivative
of the phase, ω(τ) = −dθ/dτ , we find that an accelerated observer will
see the wave with an instantaneous frequency that is being exponentially
redshifted:

ω(τ) =Ω exp
(
−gτ

c

)
. (12.9)

Since this is not a monochromatic wave at all, the next best thing is to
ask for the power spectrum of this wave which will tell us how it can be
built out of monochromatic waves of different frequencies. (This is what
an engineer would have done to analyse a time varying signal!) We will
take the power spectrum of this wave to be P(ν) = | f (ν)|2 where f (ν) is
the Fourier transform of φ(t) with respect to t:

φ(t) =
∫ ∞

−∞
dν
2π

f (ν)eiνt . (12.10)
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... to get something
spectacular!

Two remarks

Now for the black
holes

Evaluating this Fourier transform is an nice exercise in complex analysis
and one can do it by changing to the variable Ω exp[−(gt/c)] = z and
analytically continuing to Im z. You will then find that:

f (ν) = (c/g)(Ω)−iνg/cΓ (iνc/g)e−πνc/2g , (12.11)

where Γ is the standard Gamma function. Taking the modulus | f (ν)|2
using the identity Γ (x)Γ (−x) =−π/xsin(πx), we get

ν | f (ν)|2 = β
eβhν −1

; β ≡ 1
kBT

=
2πc
h̄g

. (12.12)

This leads to the the remarkable result that the power, per logarithmic band
in frequency, is a Planck spectrum with temperature kBT = (h̄g/2πc)!
Also note that though f (ν) in Eq. (12.11) depends on Ω , the power spec-
trum | f (ν)|2 is independent of Ω . It does not matter what the frequency
of the original wave was! The characteristic wavelength corresponding to
this frequency is c2/g; its value is about 1 light year for earth’s gravity —
so the scope of experimental detection of this result is slim. (Incidentally,
c2/gearth 	 1 light year gives a relation between earth’s gravity and its or-
bital period around the sun; this is one of the cosmic coincidences which
does not seem to have any deep significance.)

The moral of the story is simple: An exponentially redshifted complex
wave will have a power spectrum which is thermal with a temperature
proportional to the acceleration — which is responsible for the exponen-
tial redshift in the first place. This is the key to a quantum field theory
result, due to Unruh, that a thermometer which is uniformly accelerated
will behave as though it is immersed in a thermal bath.

There are two issues we have glossed over to get the correct result.
First, we defined the Fourier transform in Eq. (12.10) with eiνt , while the
frequency of the original wave was e−iΩ t . So we are actually referring
to the negative frequency component of a wave which has a positive fre-
quency in the inertial frame. The second — and closely related issue —
is that we have been working with complex wave modes, not just the real
parts of them. Both these can been justified by a more rigorous analysis
when these modes actually describe the vacuum fluctuations (see Chap-
ter 19) in the inertial frame rather than some real wave. But the essential
idea — and even the essential maths — is captured by this analysis.

So what about the temperature of black holes? Well, black holes pro-
duce an exponential redshift to the waves that propagate from close to the
gravitational radius to infinity. To make the connection, we will recall two
results from Chapter 11. First, the line element of a black hole is

ds2=−
(

1− 2GM
c2r

)
c2dt2+

(
1− 2GM

c2r

)−1

dr2+r2 (dθ 2 + sin2 θdφ 2) .
(12.13)
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Again, the
exponential
redshift

Second, if ω(r) is the frequency of radiation emitted by a body of radius
r and ω∞ is the frequency with which this radiation is observed at large
distances, then ω∞ = ω(r)(1−2GM/c2r)1/2.

Let us now consider a wave packet of radiation emitted from a radial
distance re at time te and observed at a large distance r at time t. The tra-
jectory of the wave packet is, of course, given by ds2 = 0 in Eq. (12.13)
which — when we use dθ = dφ = 0 — is easy to integrate. (This re-
sult again follows from the principle of equivalence because, in the freely
falling frame, light rays follow the trajectory with ds2 = 0.) We get

c(t − te) = r− re +
2GM

c2 ln
(

1−2GM/c2r
1−2GM/c2re

)

= r− re +
4GM

c2 ln
(

ωe

ω(r)

)
. (12.14)

For re � 2GM/c2, r � 2GM/c2, this gives the frequency of radiation to
be exponentially redshifted, as measured by an observer at infinity:

ω(t) ∝ exp−(c3t/4GM)≡ K exp−(gt/c) , (12.15)

where K is a constant (which turns out to be unimportant) and we have
introduced the quantity

g =
c4

4GM
=

GM
(2GM/c2)2 , (12.16)

which gives the gravitational acceleration GM/r2 at the Schwarzschild
radius r = 2GM/c2 and is called the surface gravity. Once you have ex-
ponential redshift, the rest of the analysis proceeds as before. An observer
detecting the exponentially redshifted radiation at late times (t →∞), orig-
inating from a region close to r = 2GM/c2 will attribute to this radiation
a Planckian power spectrum given by Eq. (12.12) which becomes:

kBT =
h̄g

2πc
=

h̄c3

8πGM
. (12.17)

This forms the basis for associating a temperature with a black hole.

Once again, there is an extra (non-trivial) issue related to the question
regarding the origin of the complex wave mode in the case of a black
hole. The answer is the same as in the case of an accelerated observer we
discussed earlier, with one interesting twist. Think of a spherical body sur-
rounded by vacuum. In quantum theory, this vacuum will have a pattern
of fluctuations which can be described in terms of complex wave modes.
Suppose the body now collapses to form a black hole. The collapse upsets
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The entropy

the delicate balance between the wave modes in the vacuum and mani-
fests — at late times — as thermal radiation propagating to infinity.

Using the expression in Eq. (12.17) for the temperature T (M) of the
black hole, and the energy of the black hole (Mc2), we can formally inte-
grate the relation dS = dE/T to obtain the entropy of the black hole:

S
kB

=
∫ M

0

d(M̄c2)

T (M̄)
= π

(
2GM

c2

)2(Gh̄
c3

)−1

=
1
4

4πr2
H

L2
P

, (12.18)

where rH = 2GM/c2 is the horizon radius of the black hole and LP =
(Gh̄/c3)1/2 is the so called Planck length. The entropy (which should be
dimensionless when you use sensible units with kB = 1) is just one quarter
of the area of the horizon in units of Planck length. Getting this factor 1/4
is a holy grail in models for quantum gravity — but that is another story.

Box 12.2: The thermodynamics behind Einstein’s equations

There is a remarkable connection between the first law of thermody-
namics and the laws describing gravity in a wide class of theories.
The figure below illustrates this analogy. The figure on the left shows
some amount of gas confined to a box, the volume of which can be
changed by moving the piston. Deep, not

completely
understood

If you let the piston move outward
due to the pressure of the gas, one can extract some mechanical work
from the gas as well as change the internal energy of the gas. The gas
can also exchange heat with the surroundings that can be expressed
in terms of the entropy change of the gas. The first law of thermody-
namics relates the changes in these three quantities: entropy, internal
energy and mechanical work.

Let us move on from a box of gas to a spacetime with a horizon
(see the figure on the right). The location of the horizon in this fig-
ure plays a role analogous to the position of the piston in the figure
on the left side. While you cannot push around a horizon, you can
certainly consider two different spacetimes with the horizons at two
slightly different locations. This displacement of the horizon again
causes changes in the properties of the spacetime which — in turn
— are governed by the equation describing the gravity. Remarkably
enough, one can prove that this equation reduces to a form identical
to the equation in the case of gas with a piston!
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Horizon in a 
displaced location 

H O R I Z O N

piston in a 
displaced location

gas made of molecules Black hole

piston

Fig. 12.1: Analogy between Einstein’s equations and thermodynamics. See text
for discussion.

This result was first obtained by me in 2002 in the simplest con-
text of horizons in Einstein’s theory [55, 56]. Further work by dif-
ferent groups has now established that this result is true for a wide
class of theories of gravity much more general than Einstein’s theory.
In the general context, the temperature associated with the horizon
is independent of the theory one is studying but the entropy depends
crucially on the theory. Remarkably enough, the thermodynamic de-
scription picks out the correct expression for entropy in each theory
thereby showing that the entropy density associated with a horizon
contains the necessary information to reconstruct the underlying the-
ory. This — and several other results — suggest that gravity is an
emergent phenomenon like e.g elasticity or fluid mechanics and the
field equations of gravity only have the same status as the equations
of fluid mechanics. This emergent gravity paradigm — which is a ma-
jor research area today — is a direct offshoot of the results discussed
in this chapter!



One practical
reason why this
result is important

Lorentz transforma-
tion = rotation by
imaginary angle

13Thomas and his Precession

Consider an electron (with a spin) orbiting in an atom, treated along
classical lines. In the instantaneous rest frame of the orbiting electron,
the Coulomb field (Ze2/r2) of the nucleus gives rise to a magnetic
field (v/c)(Ze2/r2). This magnetic field couples to the magnetic moment
(eh̄/2mec) of the electron, thereby contributing to the effective energy of
coupling between the spin and orbital motion. Clearly, this is a special
relativistic effect of the order of (v/c)2. But if you compare this naive
theoretical result with observation, you will find that they differ by a fac-
tor (1/2). This factor is also due to a relativistic effect called the Thomas
precession. It is one of the peculiar features of special relativity which is
purely kinematic in origin and has observational consequences [57].

This precession also has an interesting geometrical interpretation which
allows one to relate it to another — apparently unconnected — physical
phenomenon, viz. the rotation of the plane of the Foucault pendulum. In
this chapter, I will provide a straightforward (and possibly not very in-
spiring) derivation of the Thomas precession. In the next chapter we will
explore the Foucault pendulum and the geometrical relationship between
the two.

Consider the standard Lorentz transformation equations between two
inertial frames which are in relative motion along the x-axis with a speed
V ≡ cβ . These are given by x = γ(x′ +Vt ′), t = γ(t ′ +V x′/c2) where
γ = (1−β 2)−1/2. We know that the quantity s2 ≡ (−c2t2 + |xxx|2) remains
invariant under the Lorentz transformation. A quadratic expression of this
form is similar to the length of a vector in three dimensions which is in-
variant under rotation of the coordinate axes. This suggests that the trans-
formation between the inertial frames can be thought of as a rotation in
four dimensional space. The rotation must be in the t − x plane charac-
terized by a parameter, say, ψ . Indeed, the Lorentz transformation can be
equivalently written as

x = x′ coshψ+ ct ′ sinhψ, ct = x′ sinhψ+ ct ′ coshψ , (13.1)
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Two Lorentz trans-
formations = One
Lorentz transforma-
tion + Rotation

The origin of
Thomas precession

Combining
two Lorentz
transformations

with tanhψ = (V/c), which determines the parameter ψ (called the ra-
pidity) in terms of the relative velocity between the two frames. Eq. (13.1)
can be thought of as a rotation by a complex angle iψ .

Two successive Lorentz transformations with velocities V1 and V2,
along the same direction x, correspond to two successive rotations in the
t-x plane by angles, say, ψ1 and ψ2. Since two rotations in the same plane
commute, it is obvious that these two Lorentz transformations commute
and are equivalent to a rotation by an angle ψ1 +ψ2 in the t − x plane.
This results in a single Lorentz transformation with a velocity parameter
given by the relativistic sum of the two velocities V1 and V2. Note that the
rapidities simply add while the velocity addition formula is more compli-
cated.

The situation, however, changes in the case of Lorentz transformations
along two different directions. This will correspond to rotations in two dif-
ferent planes and it is well known that such rotations will not commute.
The order in which the Lorentz transformations are carried out is impor-
tant if they are along different directions. Suppose a frame S1 is moving
with a velocity VVV 1 = V1nnn1 (where nnn1 is a unit vector) with respect to a
reference frame S0 and we do a Lorentz boost to connect the coordinates
of these two frames. Now suppose we do another Lorentz boost with a
velocity VVV 2 = V2nnn2 to go from S1 to S2. We want to know what kind of
transformation will now take us directly from S0 to S2. If nnn1 = nnn2, then the
two Lorentz transformations are along the same axis and one can go from
S0 to S2 by a single Lorentz transformation. But this is not possible if the
two directions nnn1 and nnn2 are different. It turns out that, in addition to the
Lorentz transformation, one also has to rotate the spatial coordinates by a
particular amount.

This is the root cause of Thomas precession. For a body moving in an
accelerated trajectory with the direction of velocity vector changing con-
tinuously, the instantaneous Lorentz frames are obtained by boosts along
different directions at each instant. Since such successive boosts are equiv-
alent to a boost plus a rotation of spatial axes, there is an effective rotation
of the coordinate axes which occurs in the process. If the body carries
an intrinsic vector (like spin) with it, the orientation of that vector will
undergo a shift.

After all that English, let us to establish the idea mathematically. To do
this, we need the Lorentz transformations connecting two different frames
of reference, when one of them is moving along an arbitrary direction
nnn with speed V ≡ βc. The time coordinates are related by the obvious
formula

x′0 = γ(x0 −βββ · xxx) , (13.2)

where we are using the notation xi = (x0,xxx) = (ct,xxx) to denote the four-
vector coordinates. To obtain the transformation of the spatial coordinate,
we first write the spatial vector xxx as a sum of two vectors; xxx‖ =VVV (VVV ·xxx)/V 2
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Try it out!

which is parallel to the velocity vector and xxx⊥ = xxx− xxx‖ which is perpen-
dicular to the velocity vector. We know that, under the Lorentz transfor-
mation, we have xxx′⊥ = xxx⊥ while xxx′‖ = γ(xxx‖ −VVVt). Expressing everything
in terms of xxx and xxx′, it is easy to show that the final result can be written
in the vectorial form (with βββ = βnnn) as:

xxx′ = xxx+
(γ−1)
β 2 (βββ · xxx)βββ − γβββx0 . (13.3)

Equations (13.2) and (13.3) give the Lorentz transformation between two
frames whose relative direction of motion is arbitrary.

We will now use this result to determine the effect of two consecu-
tive Lorentz transformations for the case in which both VVV 1 = V1nnn1 and
VVV 2 = V2nnn2 are small in the sense that V1 � c, V2 � c. Let the first
Lorentz transformation take the four vector xb = (ct,xxx) to xb

1 and the sec-
ond Lorentz transformation take this further to xa

21. Performing the same
two Lorentz transformations in reverse order leads to the vector which we
will denote by xa

12. We are interested in the difference δxa ≡ xa
21 − xa

12 to
the lowest non-trivial order in (V/c). Since this involves the product of
two Lorentz transformations, we need to compute it keeping all terms up
to quadratic order in V1 and V2. Explicit computation, using, Eq. (13.2)
and Eq. (13.3) now gives

x0
21 ≈ [1+

1
2
(βββ 2 +βββ 1)

2]x0 − (βββ 2 +βββ 1) · xxx
xxx21 ≈ xxx− (βββ 2 +βββ 1)x

0 +[βββ 2(βββ 2 · xxx)+βββ 1(βββ 1 · xxx)]+βββ 2(βββ 1 · xxx) , (13.4)

accurate to O(β 2). It is obvious that terms which are symmetric under
the exchange of 1 and 2 in the above expression will cancel out when we
compute δxa ≡ xa

21−xa
12. Hence, we get δx0 = 0 to this order of accuracy.

In the spatial components, the only surviving term is the one arising from
last term in the expression for xxx21, which gives

δxxx = [βββ 2(βββ 1 · xxx)−βββ 1(βββ 2 · xxx)] =
1
c2 (VVV 1 ×VVV 2)× xxx . (13.5)

Comparing this with the standard result for infinitesimal rotation of co-
ordinates, δxxx = ΩΩΩ × xxx, we find that the net effect of two Lorentz trans-
formations leaves a residual spatial rotation about the direction VVV 1 ×VVV 2.
Since this result is obtained by taking the difference between two succes-
sive Lorentz transformations, δxxx ≡ xxx21 − xxx12, we can think of each one
contributing an effective rotation by the amount (1/2)(VVV 1 ×VVV 2)/c2.

Consider now a particle with a spin moving in a circular orbit. (For ex-
ample, it could be an electron in an atom; the classical analysis continues
to apply essentially because the effect is purely

We can get away
with classical
analysis

kinematic!). At two in-
stances in time t and t+δ t, the velocity of the electron will be in different
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Warm up: 3D
rotations

Why θ/2?
A rotation through
an angle θ about a
given axis is due to
successive reflec-
tions in two planes
which meet along
the axis at an angle
θ/2.

Now for the real
thing; let 3 → 4

directions VVV 1 and VVV 1 +aaaδ t where aaa is the acceleration. This should lead
to a change in the angle of orientation of the axes by the amount

δΩΩΩ =
1
2
(VVV 1 ×VVV 2)

c2 =
1
2
(VVV 1 ×aaa)

c2 δ t , (13.6)

corresponding to the angular velocity

ωωω =
δΩΩΩ
δ t

=
1
2

VVV 1 ×aaa
c2 . (13.7)

This is indeed the correct expression for Thomas precession in the non-
relativistic limit (since we had assumed V1 � c,V2 � c).

Let me now outline a rigorous derivation of this effect which is valid for
even relativistic speeds. To set the stage, we again begin with the rotations
in 3-dimensional space. A given rotation can be defined by specifying
the unit vector nnn in the direction of the axis of rotation and the angle θ
through which the axes are rotated. We can associate with this rotation a
2×2 matrix

R(θ) = cos(θ/2)− i(σσσ ·nnn)sin(θ/2) = exp−
[

iθ
2
(σσσ ·nnn)

]
, (13.8)

where σα are the standard Pauli matrices and the cos(θ/2) term is con-
sidered to be multiplied by the unit matrix though it is not explicitly
indicated. The equivalence of the two forms — the exponential and
trigonometric — of R(θ) in Eq. (13.8) can be demonstrated by expand-
ing the exponential in a power series and using the easily proved relation
(σσσ · nnn)2 = 1. We can also associate with a 3-vector xxx the 2× 2 matrix
X = xxx ·σσσ . The effect of any rotation can now be concisely described by
the matrix relation X ′ = RXR∗.

Since we can think of Lorentz transformations as rotations by an imag-
inary angle, all these results generalize in a natural way to the Lorentz
transformations. We can associate with a Lorentz transformation in the
direction nnn with the speed V = c tanhα , the 2×2 matrix

L = cosh(α/2)+(nnn ·σσσ)sinh(α/2) = exp
1
2
(ααα ·σσσ) . (13.9)

The change from trigonometric functions to hyperbolic functions is in ac-
cordance with the fact that Lorentz transformations correspond to rotation
by an imaginary angle. Just as in the case of rotations, we can associate
to any event xi = (x0,xxx) a (2× 2) matrix P ≡ xiσi where σ0 is the iden-
tity matrix and σα are the Pauli matrices. Under a Lorentz transformation
along the direction nnn with speed V , the event xi goes to xi′ and P goes P′.
(By convention, the σi’s do not change.) They are related by

P′ = LPL∗ , (13.10)

where L is given by Eq. (13.9).
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Kinematics: defined
precisely

Note the meaning of
‘comoving’

Consider an inertial, laboratory frame S0 and let S(t) be a Lorentz
frame co-moving with a particle (which has a non-zero spin) at time t.
These two frames are related to each other by a Lorentz transformation
with a velocity VVV . Consider a pure Lorentz boost in the comoving frame
of the particle which changes its velocity relative to the lab frame from
VVV to VVV + dVVV . We know that the resulting final configuration cannot be
reached from S0 by a pure boost and we require a rotation by some angle
δθθθ = ωωωdt followed by a simple boost. This leads to the relation, in terms
of the 2× 2 matrices corresponding to the rotation and Lorentz transfor-
mations, as:

L(VVV +dVVV )R(ωωωdt) = Lcomov(dVVV )L(VVV ) . (13.11)

The right hand side represents, in matrix form, two Lorentz transforma-
tions. The left hand side represents the same effect in terms of one Lorentz
transformation and one rotation — the parameters of which are at present
unknown. In the right hand side of Eq. (13.11), the matrix Lcomov(dVVV ) has
a subscript “comoving” to stress the fact that this operation corresponds
to a pure boost only in the comoving frame and not in the lab frame. To
take care of this, we do the following: We first bring the particle to rest by
applying the inverse Lorentz transformation operator L−1(VVV ) = L(−VVV ).
Then we apply a boost L(aaacomovdτ) where aaacomov is the acceleration of
the system in the comoving frame. Since the object was at rest initially,
this second operation can be characterized by a pure boost. Finally, we
transform back from the lab to the moving frame by applying L(VVV ). We
thus obtain the relation

Lcomov(dVVV ) = L(VVV )L(aaacomovdτ)L(−VVV ) . (13.12)

Using this in Eq. (13.11), we get L(VVV +dVVV )R(ωωωdt) = L(VVV )L(aaacomovdτ).
In this equation, the unknowns are ωωω and aaacomov. Moving the unknown
terms to the left hand side, we have the equation,

R(ωωωdt)L(−aaacomovdτ) = L(−[VVV +dVVV ])L(VVV ) , (13.13)

which can be solved for ωωω and aaacomov. If we denote the rapidity para-
meters for the two infinitesimally separated Lorentz boosts by α and α ′ ≡
α+dα , and the corresponding directions by nnn and nnn′ ≡ nnn+dnnn, then this
matrix equation can be expanded to first order quantities to give

1− (iωωωdt +aaadτ) · σσσ
2

= [cosh(α ′/2)− (nnn′ ·σσσ)sinh(α ′/2)]

×[cosh(α/2)− (nnn ·σσσ)sinh(α/2)] . (13.14)

Performing the necessary Taylor series expansion in dα and dnnn in the
right hand side and identifying the corresponding terms on both sides, we
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The result for ωωωdt
has a nice geomet-
rical interpretation;
see next chapter

After all that, a
simple derivation!

find that aaacomov = nnn(dα/dτ)+(sinhα)(dnnn/dτ), and more importantly,

ωωω = (coshα−1)
(

dnnn
dt

×nnn
)

, (13.15)

with tanhα = (V/c). Expressing everything in terms of the velocity, it is
easy to show that the expression for ωωω is equivalent to

ω =
γ2

γ+1
aaa×VVV

c2 = (γ−1)
(VVV ×aaa)

V 2 . (13.16)

In the non-relativistic limit, this gives a precessional angular velocity
ωωω ∼= (1/2c2)(aaa ×VVV ) which the spin will undergo because of the non-
commutativity of Lorentz transformations in different directions.

Having provided a fairly rigorous derivation of this effect, we will
now describe a simple intuitive way of understanding the same [58].
This involves interpreting the extra rotation which arises when succes-
sive Lorentz transformations are performed in terms of the length con-
traction. Consider an aircraft flying around in a large circular orbit which
we approximate by a polygon of N sides — with the understanding that,
eventually, we will take the N → ∞ limit. Once the aircraft traverses the
N−gon, it is back to the starting point. In the laboratory frame, it has ro-
tated through an angle 2π , but — in the airplane’s instantaneous frame
— traversing each side of the N−gon leads to a different result (see
Fig. 13.1). While turning through an angle θ , the transverse distance is

of polygon
one side

W

L

Fig. 13.1: An intuitive interpretation of the Thomas precession. We approximate a cir-
cular orbit as one made of a polygon with very large number of sides. While turning
from one side to another side of the polygon, the transverse and longitudinal length
scales transform differently with respect to the co-moving Lorentz frames. This effect
accumulates to give the standard result for the Thomas precession when the orbit is
completed.
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still W but the longitudinal distance undergoes Lorentz contraction to be-
come L/γ . Therefore, the angle of turn experienced at each vertex may be
thought of as W divided by L/γ , giving γθ . So, the net effect is that, over
a round trip the airplane has rotated with respect to local inertial frames
by an amount 2πγ while it has rotated through 2π with respect to the lab-
oratory frame. So the net extra rotation over the circular trip, completed
in time T , say, is Δθ = 2π(γ−1). The effective precession rate will then
be

ωP

ω
≡ Δθ/T

2π/T
= γ−1 . (13.17)

This is same as Eq. (13.6) we obtained earlier, for the case of circular mo-
tion. While the argument is not rigorous, it certainly provides an intuitive
understanding of what a bunch of Lorentz transformations can do.

Box 13.1: Geometrical way of combining rotations

An interesting issue in the study of rotations in 3-dimensional space
is to characterize geometrically the effect of combining two arbitrary
rotations [50]. You might enjoy proving the following construction
for finding the resultant of two spatial rotations characterized by the
directions nnn1,nnn2 and angles θ1,θ2.

n1

θ1

n2
P2C1

C2

P1

θ2

2

θ2

θ1

2

θnet

2

Fig. 13.2: A geometrical way of combing two rotations around two arbitrary
axes.

Let the directions nnn1 and nnn2 be denoted by the points P1 and P2 on
the surface of a unit sphere. Draw the great circle going through P1
and P2. Draw another great circle C1 passing through P1 making an
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angle θ1/2 with the circle P1P2, i.e., the tangents to the two circles
drawn at P1 make an angle θ1/2. Similarly, draw a great circle C2
passing through P2 making an angle θ2/2 with the circle P1P2. The
orientations are to be as indicated in Fig. 13.2. The intersection of
C1 and C2 will give the direction of the axis of the resultant rotation
and the external angle of the spherical triangle at the intersection will
give θ/2 where θ is the resultant angle of rotation.



Foucault’s
demonstration

If only Paris was at
the North Pole ...

The most efficient
(but unimaginative)
way of deriving the
result

14When Thomas met Foucault

The Pantheon in Paris was used by Leon Foucault on 31 March 1851, un-
der the reign of Louis-Napoleon Bonaparte, the first titular president of
the French republic, to give an impressive demonstration. Using a pendu-
lum (with a 67 meter wire and a 28 kg pendulum bob), he could demon-
strate the rotation of the Earth in a tell-tale manner. As the pendulum kept
swinging, one could see that the plane of oscillation of the pendulum itself
was rotating in a clockwise direction (when viewed from the top). The fre-
quency of this rotation was ω = Ω cosθ where Ω is the angular velocity
of Earth and θ is the co-latitude of Paris. (That is, θ is the standard polar
angle in spherical polar coordinates with the z−axis being the axis of rota-
tion of Earth. So π/2−θ is the geographical latitude). Foucault claimed,
quite correctly, that this demonstrates the rotation of the Earth using an
‘in situ’ experiment without us having to look at the celestial objects.

This result is quite easy to understand if the experiment was performed
at the poles or the equator (instead of at Paris!). The situation at the north
pole is as shown in Fig. 14.1. Here we see the Earth as rotating (from
west to east, in the counter-clockwise direction when viewed from the top)
underneath the pendulum, making one full turn in 24 hours. It appears
reasonable to deduce from this that, as viewed from Earth, the plane of
oscillation of the pendulum will make one full rotation in 24 hours; so the
angular frequency ω of the rotation of the plane of the Foucault pendulum
is just ω =Ω . (Throughout the discussion it is the rotation of the plane of
oscillation of the pendulum we are concerned with; not the period of the
pendulum 2π/ν , which — of course — is given by the standard formula
involving the length of the suspension wire, etc.). At the equator, on the
other hand, the plane of oscillation does not rotate. So the formula, ω =
Ω cosθ , captures both limits correctly.

It is easy to write down the equations of motion for the pendulum bob
in the rotating frame of the Earth and solve them to obtain this result [36,
59] correct to linear order in Ω . Essentially, the Foucault pendulum effect
arises due to the Coriolis force in the rotating frame of the Earth which
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Fig. 14.1: The rotation of the plane of the Foucault pendulum is easy to understand
if the pendulum was located in the north pole. However, as discussed in the text, the
apparent simplicity of this result is deceptive.

leads to an acceleration 2vvv×ΩΩΩ where vvv, the velocity of the pendulum
bob, is directed tangential to the Earth’s surface to a good approximation.
If we choose a local coordinate system with the Z− axis pointing normal
to the surface of the Earth and the X ,Y coordinates in the tangent plane at
the location, then it is easy to show that the equations of motion for the
pendulum bob are well approximated by

Ẍ +ν2X = 2ΩzẎ ; Ÿ +ν2Y =−2ΩzẊ , (14.1)

where ν is the period of oscillation of the pendulum and Ωz = Ω cosθ
is the normal component of Earth’s angular velocity. (This can be easily
derived from Eq. (6.3) of Chapter 6.) In arriving at these equations we
have ignored terms quadratic in Ω 2 and the vertical displacement of the
pendulum. The solution to this equation is obtained by introducing the
variable q(t)≡ X(t)+ iY (t). which satisfies the equation

q̈+2iΩzq̇+ν2q = 0 . (14.2)

The solution, to the order of accuracy we are working with, is given by

q = X(t)+ iY (t) = (X0(t)+ iY0(t))exp(−iΩzt) , (14.3)

where X0(t),Y0(t) is the trajectory of the pendulum in the absence of
Earth’s rotation. It is clear that the net effect of rotation is to cause a shift
in the plane of rotation at the rate Ωz =Ω cosθ . Based on this knowledge
and the results for the pole and the equator one can give a ‘pure English’
derivation of the result for intermediate latitudes by saying something like:
“Obviously, it is the component of ΩΩΩ normal to the Earth at the location
of the pendulum which matters and hence ω =Ω cosθ .”



14 When Thomas met Foucault 145

But, what is actually
happening?

A minor paradox,
usually glossed over

The first-principle approach, based on Eq. (14.1), of course, has the
advantage of being rigorous and algorithmic; for example, if the effects
of the ellipticity of the Earth are to be incorporated, it can be done by
working with the equations of motion. But it does not give you an intuitive
understanding of what is going on, and much less a unified view of this
problem with other related problems having the same structure. We shall
now describe an approach to this problem which has the advantage of
providing a clear geometrical picture and connecting it up — somewhat
quite surprisingly — with Thomas precession discussed in the previous
chapter [60].

R

A

θ

R
tan

θ

R sin θ

Fig. 14.2: A Foucault pendulum is located at the co-latitude θ (i.e., at the geographical
latitude (π/2− θ)). A cone which is tangential at this latitude allows us to obtain a
geometrical interpretation of the rotation of the plane of the Foucault pendulum.

An issue that causes some confusion as regards the Foucault pendu-
lum is the following. While analyzing the behavior of the pendulum at the
pole, one assumes that the plane of rotation remains fixed while the Earth
rotates underneath it. If we make the same claim for a pendulum experi-
ment done at an intermediate latitude, — i.e., if we say that the plane of
oscillation remains invariant with respect to, say, the “fixed stars” and the
Earth rotates underneath it — it seems natural that the period of rotation
of the pendulum plane should always be 24 hours irrespective of the lo-
cation! This, of course, is not true and it is also intuitively obvious that
nothing happens to the plane of rotation at the equator. In this way of ap-
proaching the problem, it is not very clear how exactly the Earth’s rotation
influences the motion of the pendulum.
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The geometrical
insight: parallel
transport

Analyse it on the
cone

We will now provide a geometrical approach to this problem, by
rephrasing it as follows [61, 62]. The plane of oscillation of the pendu-
lum can be characterized either by a vector normal to its plane or —
equivalently — by a vector which is lying in the plane and tangential
to the Earth’s surface. Let us now introduce a cone which is coaxial with
the axis of rotation of the Earth and having its surface tangential to the
Earth at the latitude of the pendulum (see Fig. 14.2). The base radius of
such a cone will be Rsinθ where R is the radius of the Earth and the slant
height of the cone will be R tanθ . Such a cone can be built out of a sector
of a circle (as shown in Fig. 14.3) having the circumference 2πRsinθ and
radius R tanθ by identifying the lines OA and OB. The ‘deficit angles’ of
the cone, α and β ≡ 2π−α , satisfy the relations:

(2π−α)R tanθ = 2πRsinθ , (14.4)

which gives
α = 2π(1− cosθ); β = 2π cosθ . (14.5)

α

A

C

B

β

R
ta

n
θ

2πR sin θ

O

Fig. 14.3: The cone in the previous figure is built from the sector of the circle shown
here. The parallel transport of a vector is easier to understand in terms of the deficit
angle of the sector.

The behavior of the plane of the Foucault pendulum can be understood
very easily in terms of this cone. Initially, the Foucault pendulum starts
oscillating in some arbitrary direction at the point A, say. This direction
of oscillation can be indicated by some straight line drawn along the sur-
face of the cone (like AC in Fig. 14.3). While the plane of oscillation of
the pendulum will rotate with respect to a coordinate system fixed on the
Earth, it will always coincide with the lines drawn on the cone which re-
main fixed relative to the fixed stars. When the Earth makes one rotation,
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There you are!

This is good, but it
gets better!

we move from A to B in the flattened out cone in Fig. 14.3. Physically, of
course, we identify the two points A and B with the same location on the
surface of the Earth. But when a vector has been moved around a curve
along the lines described above, on the curved surface of Earth, its orienta-
tion does not return to the original value. It is obvious from Fig. 14.3 that
the orientation of the plane of rotation (indicated by a vector in the plane
of rotation and tangential to the Earth’s surface at B) is different from the
corresponding vector at A. This process is called parallel transport and the
fact that a vector changes on parallel transport around an arbitrary closed
curve on a curved surface is a well known result in differential geometry
and general relativity.

Clearly, the orientation of the vector changes by an angle β = 2π cosθ
during one rotation of Earth with period T . Since the rate of change is
uniform throughout because of the steady state nature of the problem, the
angular velocity of the rotation of the pendulum plane is given by

ω =
β
T

=
2π
T

cosθ =Ω cosθ . (14.6)

This is precisely the result we were after. The key geometrical idea was
to relate the rotation of the plane of the Foucault pendulum to the parallel
transport of a vector characterizing the plane, around a closed curve on the
surface of Earth. When this closed curve is not a geodesic — and we know
that a curve of constant latitude is not a geodesic — the orientation of this
vector changes when it completes one loop. There are sophisticated ways
of calculating how much the orientation changes for a given curve on a
curved surface. But in the case of a sphere, the trick of an enveloping cone
provides a simple procedure. When the pendulum is located at the equator,
the closed curve is the equator itself. The equator, being a great circle, is
a geodesic on the sphere and hence the vector does not get ‘disoriented’
on going around it. So the plane of the pendulum does not rotate in this
case. (In fact, there is a nice relation between the area enclosed by a curve
on the sphere and the amount of rotation the vector will undergo when
parallel transported around this curve; see the Appendix to this chapter.)

Remarkably enough, one can show that an almost identical approach
allows one to determine the Thomas precession of the spin of a particle
(say, an electron) moving in a circular orbit around a nucleus [63].

We saw in the last chapter that the rate of Thomas precession is given,
in general, by an expression of the form

ωωωdt = (coshχ−1)(dn̂nn× n̂nn) , (14.7)

where tanhχ = v/c and v is the velocity of the particle. In the case of
a particle moving on a circular trajectory, the magnitude of the velocity
remains constant and we can integrate this expression to obtain the net
angle of precession during one orbit. For a circular orbit, dn̂nn is always
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Velocity space in
relativity

Relative velocity, by
a simple trick

A metric on the
velocity space

perpendicular to n̂nn so that n̂nn×dn̂nn is essentially dθ which, on integration,
gives a factor 2π . Hence the net angle of Thomas precession during one
orbit is given by

Φ = 2π(coshχ−1) . (14.8)

The similarity between the net angle of turn of the Foucault pendulum
and the net Thomas precession angle is now obvious when we compare
Eq. (14.8) with Eq. (14.5). We know that in the case of Lorentz transfor-
mations, one replaces real angles by imaginary angles which accounts for
the difference between the cos and cosh factors. What we need to do is to
make this analogy mathematically precise which will be our next task. It
will turn out that the sphere and the cone we introduced in the real space,
to study the Foucault pendulum, have to be introduced in the velocity
space to analyze Thomas precession.

Before exploring the relativistic velocity space, let us warm-up by ask-
ing the following question: Consider two frames S1 and S2 which move
with velocities vvv1 and vvv2 with respect to a third inertial frame S0. What
is the magnitude of the relative velocity between the two frames? This
is most easily done using Lorentz invariance and four vectors (and to
simplify notation we will use units with c = 1). We can associate with
the 3-velocities vvv1 and vvv2, the corresponding four velocities, given by
ui

1 = (γ1,γ1vvv1) and ui
2 = (γ2,γ2vvv2) with all the components being mea-

sured in S0. On the other hand, with respect to S1, this four vector will
have the components ui

1 = (1,0) and ui
2 = (γ,γvvv) where vvv (by definition)

is the relative velocity between the frames. To determine the magnitude of
this quantity, we note that in this frame S1 we can write γ = −u1iui

2. But
since this expression is Lorentz invariant, we can evaluate it in any inertial
frame. In S0, with ui

1 = (γ1,γ1vvv1),ui
2 = (γ2,γ2vvv2) this has the value

γ = (1− v2)−1/2 = γ1γ2 − γ1γ2vvv1 · vvv2 . (14.9)

Simplifying this expression we get

v2 =
(1− vvv1 · vvv2)

2 − (1− v2
1)(1− v2

2)

(1− vvv1 · vvv2)2 =
(vvv1 − vvv2)

2 − (vvv1 × vvv2)
2

(1− vvv1 · vvv2)2 .

(14.10)

We next consider a 3-dimensional abstract space in which each point
represents a velocity of a Lorentz frame measured with respect to some
fiducial frame. We are interested in defining the notion of ‘distance’ be-
tween two points in this velocity space. Consider two nearby points which
correspond to velocities vvv and vvv+dvvv that differ by an infinitesimal quan-
tity. Using the analogy with the usual 3-dimensional flat space, one would
have assumed that the “distance” between these two points is just

|dvvv|2 = dv2
x +dv2

y +dv2
z = dv2 + v2(dθ 2 + sin2 θdφ 2) , (14.11)
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This is called the
(three dimensional)
Lobachevsky space

where v = |vvv| and (θ ,φ) denote the direction of vvv. In non-relativistic
physics, this distance also corresponds to the magnitude of the relative
velocity between the two frames. However, we have just seen that the rel-
ative velocity between two frames in relativistic mechanics is different
and given by Eq. (14.10). It is more natural to define the distance between
two points in the velocity space to be the relative velocity between the re-
spective frames. In that case, the infinitesimal “distance” between the two
points in the velocity space will be given by Eq. (14.10) with vvv1 = vvv and
vvv2 = vvv+dvvv. So

dl2
v =

(dvvv)2 − (vvv×dvvv)2

(1− v2)2 . (14.12)

Using the relations

(vvv×dvvv)2 = v2(dvvv)2 − (vvv ·dvvv)2; (vvv ·dvvv)2 = v2(dv)2 , (14.13)

and using Eq. (14.11) where θ , φ are the polar and azimuthal angles of
the direction of vvv, we get

dl2
v =

dv2

(1− v2)2 +
v2

1− v2 (dθ
2 + sin2 θ dφ 2) . (14.14)

If we use the rapidity χ in place of v through the equation v = tanhχ , the
line element in Eq. (14.14) becomes:

dl2
v = dχ2 + sinh2 χ(dθ 2 + sin2 θ dφ 2) . (14.15)

This is an example of a curved space within the context of special relativ-
ity.

If we now change from real angles to the imaginary ones, by writing
χ = iη , the line element becomes

−dl2
v = dη2 + sin2η(dθ 2 + sin2 θ dφ 2) , (14.16)

which (except for an overall sign which is irrelevant) represents the dis-
tances on a 3-sphere having the three angles η ,θ and φ as its coordinates.

Of these three angles, θ and φ denotes the direction of velocity in the
real space as well. When a particle moves in the x-y plane in the real
space, its velocity vector lies in the θ = π/2 plane and the relevant part of
the metric reduces to

dL2
v = dη2 + sin2ηdφ 2 , (14.17)

which is just a metric on the 2-sphere. Further, if the particle is moving on
a circular orbit having a constant magnitude for the velocity, it follows a
curve of η = constant on this 2-sphere. This completes the analogy with
the Foucault pendulum, which moves on a constant latitude curve. If the
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Parallel transport,
now in velocity
space

A nice result in
differential geometry

Why this Appendix?

The central result

1. Approximate the
closed curve by a
polygon with large
number of sides

particle carries a spin, the orbit will transport the spin vector along this
circular orbit. As we have seen earlier, the orientation of the vector will
not coincide with the original one when the orbit is completed and we
expect a difference of 2π(1− cosη) = 2π(1− coshχ). So the magnitude
of the Thomas precession, over one period is given precisely by Eq. (14.8).

When one moves along a curve in the velocity space, one is sam-
pling different (instantaneously) co-moving Lorentz frames obtained by
Lorentz boosts along different directions. As we saw in the last chapter,
Lorentz boosts along different directions do not, in general, commute.
This leads to the result that if we move along a closed curve in the veloc-
ity space (treated as representing different Lorentz boosts) the orientation
of the spatial axes would have changed when we complete the loop.

The ideas described above are actually of far more general validity.
Whenever a vector is transported around a closed curve on the surface of
a sphere, the net change in its orientation can be related to the solid angle
subtended by the area enclosed by the curve. In the case of the Foucault
pendulum, the relevant vector describes the orientation of the plane of the
pendulum and the transport is around a circle on the surface of the Earth.
In the case of Thomas precession, the relevant vector is the spin of the
particle and the transport occurs in the velocity space. Ultimately, both
the effects — the Foucault pendulum and Thomas precession — arise
because the corresponding space in which the vector is being transported
(surface of Earth, relativistic velocity space, respectively) is curved.

Appendix: There is an elegant and geometrical way of obtaining all these
results using the concept of parallel transport of vectors on a sphere.
Though somewhat more advanced than the other concepts developed here,
its sheer elegance makes the case for its inclusion.

Consider moving a vector around a closed curve C “always parallel
to itself”. (It is this notion which we will not bother to make precise at
this stage, and will rely on your intuition!) If the closed curve was drawn
on a sheet of paper and you did this, the vector will point in the original
direction when it completes the circuit around the curve. What happens
if the closed curve C was drawn on the surface of a sphere? Now the
direction of the vector will not coincide with the original direction when
it completes the loop. It would have rotated by an angle

α(C) =
S(C)

r2 , (14.18)

where S(C) is the area enclosed by the curve. There are several ways of of
proving this result, but probably the most intuitive one is the following:

We first note that any closed curve can be approximated by a polygon
of N sides, with very large N, to as much accuracy as we want. This is clear
when the curve is drawn on a sheet of paper when the sides of the polygon
is made of usual straight lines. To do the same on the surface of a sphere,
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2. Divide the poly-
gon into triangles

3. Find the result for
a triangle and you
are done!

we need the notion of a straight line on the sphere. We know that the curve
of shortest distance between any two points on the surface of a sphere is
the relevant arc of a great circle, which is the circle passing through the
two points with its center at the center of the sphere, and radius equal
to the radius of the sphere. [Proof: The shortest distance between two
points on the equator is clearly the minor arc along the equator. Given any
two points on the surface of a sphere, you can draw an “equator” through
them!]. Thus, arcs of great circles generalize the notion of straight lines to
the surface of a sphere. So, if we can prove Eq. (14.18) for a trip around
a large N−gon on the sphere, with sides made of the arcs of great circles,
we are done.

We next note that you can divide up any large polygon into triangles.
Again, this fact is obvious if the polygon is on a sheet of paper. To do
it on a sphere, we have to generalize the notion of a triangle on to the
surface of a sphere. This is easy because the triangular region is bounded
by three straight lines and we already know how to define a straight line
on the surface of a sphere. It is therefore natural to define a triangle in
terms of three intersecting great circles. The area of the polygon is, of
course, the sum of the areas of the triangles it is decomposed into. We
can now think of moving the vector around the polygon as equivalent to
moving it around the individual triangles of which the polygon is made
of. Both α(C) and S(C) in Eq. (14.18) add up to give this result. Thus, if
we can prove Eq. (14.18) for moving a vector around a triangle drawn on
the surface of a sphere, we are done.

Let us first compute the angle by which the vector rotates when taken
around a triangle. Nothing happens to the vector’s orientation when it is
moving along the straight lines, being either parallel or perpendicular to
the line. All the rotations occur at the three vertices. It is easy to see that, if
the three angles of the triangle are (θ1,θ2,θ3) then the rotations are by the
amounts (θ1 −π,θ2 −π,θ3 −π) so that the total rotation is by an angle
(θ1 +θ2 +θ3 −3π). Since 2π doesn’t count, this is same as a rotation by
the angle

α(C) = (θ1 +θ2 +θ3 −π) . (14.19)

What we need to do is to relate this to the area of the triangle.
This is easy to do. In Fig. 14.4 we take one of the sides of the trian-

gle, AB, and extend it to form the great circle. The “northern hemisphere”
formed by this great circle has an area 2πr2. Similarly, note that the tri-
angle we are interested in (with area S) and the adjacent triangle (S′) to-
gether form a lune of a sphere. Its area will be a fraction (θ1/2π) of the
full sphere. That is, 2θ1r2. Elementary addition of the areas now give us
the relation 2πr2 = 2θ1r2 + 2θ2r2 + 2θ3r2 − 2S. Re-arranging and using
Eq. (14.19) we get the required relation

S(C) = (θ1 +θ2 +θ3 −π)r2 = α(C)r2; α(C) =
S(C)

r2 . (14.20)
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Fig. 14.4: Relating the area S(C) to the angles of the spherical triangle; see text for the
discussion.

Relation to the
Foucault pendulum

Do the same in
velocity space and
you get Thomas
precession

After all this preamble and elegant geometry, let us get back to Foucault
and Thomas. The plane of rotation of the Foucault pendulum defines a
vector which is normal to the plane. When the pendulum goes around the
Earth due to Earth’s rotation, this vector makes a circuit at a fixed latitude.
Of course, a given latitude defines a simple curve C on the surface of the
sphere, viz., a minor circle with the center located on the axis of rotation.
The area S(C) of the sphere enclosed by this curve of constant co-latitude
θ is simple to compute and is given by S(C) = 2πr2 − 2πr2 cosθ . From
our result in Eq. (14.18), it follows that the vector defining the plane of
the Foucault pendulum will rotate by the amount

α(C) =
S(C)

r2 = 2π−2π cosθ →−2π cosθ , (14.21)

when we ignore the 2π factor. All that the Earth does is to parallel trans-
port the vector defining the normal to the plane of the Foucault pendulum
around a circle of constant latitude λ ! (If you use the colatitude θ , the
sines become cosines.)

One can do all these in the velocity space as well — which is a pseudo
sphere rather than a sphere. A particle moving in a closed orbit in real
space will trace a closed curve in the velocity space as well. It is also pos-
sible to define the motion of a suitable vector — like the normal to the
plane of the Foucault pendulum — in this case too. The Thomas preces-
sion is then related to the net rotation of this vector when it is dragged
around a closed curve in the velocity space. Because of the similarity be-
tween the sphere and the pseudo sphere, a relation similar to Eq. (14.18)
holds in this case as well. By calculating the relevant areas using the met-
ric in the velocity space, we can once again obtain the expression for the
Thomas precession. You may want to have some fun, filling in the details
yourself.
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15The One-body Problem

Let us begin by discussing the — apparently elementary — situation of
the transition from special relativity to non-relativistic mechanics (NRM)
by taking the limit c−1 → 0. (This involves moving along SR to NRM in
Fig. 1.1.) While the text books consider this limiting procedure as straight-
forward, we will see that some curious features arise [2] when we evaluate
the limiting form of the action functional in this context.

We know that special relativistic mechanics is invariant under a Lorentz
transformation of the coordinates, while non-relativistic mechanics is in-
variant under a Galilean transformation of the coordinates (x′ = x−Vt,
t ′ = t). Given the fact that one recovers the Galilean coordinate trans-
formation by setting c = ∞ in the Lorentz transformation equations, one
would have thought that any theory which is Lorentz invariant will lead to
a theory which is invariant under Galilean transformations in the limit of
c → ∞. As we shall see, it is not so simple.

To illustrate what is involved, let us begin with the One-Body-Problem
in physics, viz. the description of a free particle by a suitable action
functional in special relativity and compare it with the situation in non-
relativistic mechanics. The action A is, in general, given by

A =
∫

L(xxx,vvv, t)dt . (15.1)

But, for a free particle, all locations and directions in space are equivalent;
so are all moments of time. If the free particle Lagrangian has be invariant
under space and time translations and rotations, it can only be a function
of the square of the particle’s velocity; i.e., L = L(v2). This holds both
in the case of relativistic and non-relativistic mechanics. It is, however,
impossible to proceed further and determine the explicit form of L(v2),
without making some additional assumptions. We now have to make a
distinction between non-relativistic and relativistic mechanics by postu-

153© Springer International Publishing Switzerland 2015 
T. Padmanabhan, Sleeping Beauties in Theoretical Physics, Lecture Notes in Physics 895,  
DOI 10.1007/978-3-319-13443-7_  15



154 15 The One-body Problem

Symmetry: Galilean
invariance

The Lagrangian
flunks the test!

Conventional
wisdom

lating the invariance of physical laws under different sets of coordinate
transformations.

Let us first consider the non-relativistic theory. Here, we postulate that
the equations of motion should retain the same form when we make a
Galilean transformation:

x = x′+Vt; t = t ′ , (15.2)

from the co-ordinates (x, t) of an inertial frame S to the co-ordinates (x′, t ′)
of another frame S′ moving with a uniform velocity V along the positive
x−direction with respect to S. (In this and what follows, we suppress the
two spatial dimensions and work in (1 + 1)-dimensions for simplicity.)
The corresponding velocity transformation is v = v′ +V where v and v′
are the velocities measured in frames S and S′ respectively.

The sufficient (though not necessary) condition for the equations of
motion to retain the same form in both S and S′ is that the action should be
invariant under the transformations in Eq. (15.2). It is, however, straight-
forward to see that no non-trivial function L(v2) has this property! We
cannot construct an action functional which remains invariant under the
Galilean transformation. Rather surprisingly, no Lagrangian exists which
respects isotropy and homogeneity of space and strict invariance under
Galilean transformations.

Maybe this should warn us that something is wrong and maybe we
should have abandoned the Galilean transformation! But historically, one
took the easy way out by noting that the equations of motion will remain
invariant even if the Lagrangian is not, as long as the Lagrangian changes
only by the addition of a total time derivative of a function of coordinates
and time. The trouble with this option is that, while it is fine in a classical
theory, quantum mechanics cares (in the path integral approach) about the
exact numerical value of the action. Since classical theories are approx-
imate, and nature is quantum mechanical, we should expect trouble. But
let us ignore all this for a moment and proceed further along conventional
lines.

It is easy to show that, with these relaxed conditions, we can use a
Lagrangian that is proportional to the square of the velocity i.e. L ∝ v2 or
L = (1/2)mv2 where m is defined to be the mass of the particle. In this
case, the Lagrangians L and L′, in the two frames of reference S and S′,
differ by a total time derivative of a function of co-ordinates and time:

L =
1
2

mv2 =
1
2

m(v′+V )2 = L′+
d
dt
(mx′V +

1
2

mV 2t) . (15.3)
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It is much nicer for
the relativistic free
particle

The corresponding actions differ by contributions at the end points:1

A = A ′+
(

mx′V +
1
2

mV 2t ′
)∣∣∣∣

2

1
. (15.4)

Also note that the canonical momentum (p′ = p−mV ) and the energy
(E ′ = E − pV +(1/2)mV 2) are not invariant when we transform from L
to L′.

Exact theories are more beautiful than approximate ones and show
greater level of symmetry. In this context, this is precisely what happens
when we proceed from non-relativistic mechanics to relativistic mechan-
ics. In special relativity, we replace Eq. (15.2) by the Lorentz transforma-
tions between S and S′ of the form:

x =
x′+Vt ′

(1−V 2/c2)1/2 ; t =
t ′+V x′/c2

(1−V 2/c2)1/2 . (15.5)

The transformation of velocities is now given by:

v =
v′+V

1+ v′V/c2 . (15.6)

It is now possible to construct an action functional which is actually in-
variant (instead of picking up an extra boundary term) under the transfor-
mations in Eq. (15.5). This is given by (see Chapter 2):

A = α
∫
(1− v2/c2)1/2dt , (15.7)

where α is a constant.
But it is simply not possible to choose α such that Eq. (15.7) reduces to

the action for non-relativistic mechanics when c →∞! The best we can do
is to choose α in such a way that in the non-relativistic limit, we get back
the non-relativistic form of the action, apart from a constant term in the
Lagrangian. This amounts to the standard choice of α =−mc2. Hence, in
special relativity, the action for a free particle is taken to be:

A =−mc2
∫
(1− v2/c2)1/2dt . (15.8)

The above text book discussion, however, raises some issues.

1 As an aside, we note the following amusing fact: We implemented homogeneity in
time and space in the free particle Lagrangian by excluding the explicit dependence
of L on xxx or t but incorporated Galilean invariance by allowing L to pick up a to-
tal derivative. It is possible to do the converse. One can write down free particle La-
grangians which are strictly invariant under Galilean transformations but differ from
the standard Lagrangian L0 = (1/2)mv2 by a total time derivative. A simple example
is L = (1/2)m(vvv− xxx/t)2 which is invariant under a Galilean transformation but de-
pends on t and xxx. However, L differs from L0 = (1/2)mv2 by the total time derivative
−d/dt((1/2)mx2/t) which shows that the dependence on t and xxx is of no consequence.
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quantum theory

Schrödinger
equation in a
non-inertial frame

We expect the non-relativistic theory to arise as a limiting case of the
fully relativistic theory, in the limit of c →∞. The Lorentz transformation
equations do reduce (strictly) to the Galilean transformation equations in
the limit of c→∞. However, the special relativistic action does not reduce
to the non-relativistic action in this limit, but instead picks up an extra
term, −mc2t evaluated at the end points. This fact is a bit surprising by
itself. As we shall see, this term — which is usually ignored in textbooks
as being due to “just an addition of a constant to a Lagrangian” — has
some interesting implications for the structure of special relativity and
non-relativistic mechanics. This is already apparent from the fact that the
relativistic action in Eq. (15.8) blows up in the limit of c → ∞ and does
not have a valid limit at all.

You might think one can “renormalize” this action by adding a term
A1 ≡ mc2t to Eq. (15.8), then A +A1 will have a proper limit. Perish
the thought! If you do that, the action will not be Lorentz invariant (be-
cause A1 is not), and hence this “renormalization” is illegal. We will see
repeatedly that the term mc2t plays a crucial role in our future discussion.

Such issues are usually ignored by noting that the equations of motion
do not change when a total time derivative of a function (of coordinates
and time) is added to the Lagrangian, and hence such action functionals
are equivalent as far as physical phenomena are concerned. As I said be-
fore, this is true in classical physics, but in quantum theory, the value of
the action is closely related to the phase of the wavefunction (see Chapter
2). Our result shows that the phase of the wavefunction of a free particle
remains invariant under Lorentz transformations, but in the c → ∞ limit,
this invariance gets broken.

Since the issue really arises only in the quantum theory, we need to ex-
amine how the Schrödinger equation transforms under the Galilean trans-
formation. To get more insight (and with future applications in mind) we
will work out a slightly more general case of one-body-problem in a non-
inertial frame. We will consider the transformation from a frame of ref-
erence S = (t,x) to a frame S′ = (t,x′) ≡ (t,x− ξ (t)) where ξ (t) is an
arbitrary function. When ξ (t) =Vt this corresponds to standard Galilean
transformation while for a general ξ (t) it describes a transformation to a
non-inertial frame with acceleration ξ̈ . The Lagrangian of the free particle
in S′ is given by

L′ =
1
2

mẋ′2 =
1
2

mẋ2 −mẋξ̇ +
1
2

mξ̇ 2 , (15.9)

which can be written in a physically more meaningful way as:

L′ = L+
d f
dt

, (15.10)
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By and large, it goes
as expected

The ψ is not a
scalar under the
coordinate
transformation!

and L is a new Lagrangian given by

L =
1
2

mẋ2 +mxξ̈ , (15.11)

and
f ≡−mxξ̇ +

∫ 1
2

mξ̇ 2dt . (15.12)

Clearly, L is equivalent to L′ as far as the equations of motion are con-
cerned, since the total time derivative d f/dt does not contribute to the
equations of motion. Moreover, L represents the Lagrangian for a particle
acted upon by a force mξ̈ or, equivalently, a particle located in a spatially
homogeneous (but time dependent) gravitational field ξ̈ . This is precisely
what we would have expected from the Principle of Equivalence; so ev-
erything makes sense.

But when we add d f (x, t)/dt, to the Lagrangian L, thus transforming
it to L′ = L+d f/dt, both the canonical momentum and the Hamiltonian
change, becoming

p′ = p+
∂ f
∂x

; H ′ = H − ∂ f
∂ t

. (15.13)

In quantum mechanics, the time evolution of the wavefunction is deter-
mined by the Hamiltonian operator and hence, the form of the wavefunc-
tion must change when we make a co-ordinate transformation from S to S′.
LetΨ ′(t,x′) be the quantum-mechanical wavefunction for the free particle
in the frame S′. Then, it can be shown that the corresponding wavefunction
Ψ(t,x) for the same particle in the frame S is given by:

Ψ(t,x) =Ψ ′(t,x−ξ (t))e−i f/h̄ , (15.14)

where f (t,x) is given by Eq. (15.12) andΨ(t,x) satisfies the equation

ih̄
∂Ψ(t,x)

∂ t
=− h̄2

2m
∂ 2Ψ(t,x)

∂x2 −mξ̈xΨ(t,x) , (15.15)

in the frame of reference S. (Equation 15.15 is derived in Appendix 1.)
We see from Eq. (15.11) that in this frame, the particles do experience
a pseudo-force −mξ̈ which arises from the “pseudo-potential” energy
term, −mξ̈x, and Eq. (15.15) is indeed the Schrödinger equation with
a “pseudo-potential” energy term, −mξ̈x. But Eq. (15.14) tells us that
you cannot just obtain the wavefunction in this frame by substituting
x′ = x− ξ (t) which is what we would have done if the wavefunction is
a scalar; you have to change the phase as well by f . But from Eq. (15.10)
we know that the two actions corresponding to L and L′ differ by f ; so the
phase change is exactly the change in the action.
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Box 15.1: Quantum particle in constant gravitational field

The result in Eq. (15.15) might look like one of those formal things
but it has practical applications. Note that it allows you to solve a
time dependent Schrödinger equation in a class of potential of the
form F(t)x by just finding the free particle solution and transforming
to a different frame!

As a simple application of this, consider a case of the particle lo-
cated in a uniform force field with the Hamiltonian H =(1/2)p2+ax.Particle in a

constant force field The usual way of determining the eigenfunctions HφE = EφE leads
to Airy functions in x−space. This, however, is one problem in
which the momentum space representation of the operators with
x = i(∂/∂ p) turns out to be easier to handle!. The Schrödinger equa-
tion in the p−representation is now ia(∂φ/∂ p) =

[
E − (p2/2)

]
φ .

Integrating this equation and then Fourier transforming we get the
solution in the x−representation to be

φE(x) =
∫ ∞

−∞
d pexp i[p(x−E/a)+(p3/6a)] , (15.16)

which is indeed an integral representation for the Airy function (see
e.g., Ref. [64]).

But we can solve this problem using Eq. (15.15)! We begin withCleverer way to get
the same result the simplest free particle solution to the Schrödinger equation, which

are the momentum eigenfunctions ψfree(t,x) = exp(−ipx+ ip2t/2).
We next obtain the solution to Eq. (15.15) by the simple transforma-
tion x → x+ �(t) where �̈= a = constant and the addition of a phase
as indicated in Eq. (15.14). This gives the solution:

ψ = exp−i[x(p−at)+(1/2)pat2−(1/2)p2t−(1/6)a2t3] . (15.17)

This is, of course, not an energy eigenfunction. However, a Fourier
transform of this expression with respect to t

φE(x) =
∫ ∞

−∞
dt ψ(t,x)exp iEt , (15.18)

will give the energy eigenfunctions for a particle moving in a uniform
force field. Changing the variable of integration from t to ξ≡(at− p),
you will find that various terms cancel out nicely, leading to

φE(x) ∝
∫ ∞

−∞
dξ exp i[ξ (x−E/a)+(ξ 3/6a)] , (15.19)

which are the same energy eigenfunctions as in Eq. (15.16) except
for an unimportant phase!
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The solutions of the
Schrödinger equa-
tion are not scalars
under Galilean
transformations ...

... but the solutions
of the KG equation
are scalars under
Lorentz trans-
formations; How
come?

The crucial phase
difference

After having obtained the result for a general ξ (t), let us get back to
the Galilean transformation, which corresponds to ξ (t) =Vt and

f =−mxV +
1
2

mV 2t . (15.20)

So, in this case when we need to relate the two wavefunctions using
Eq. (15.14) we get:

Ψ(t,x) =Ψ ′(t,x−Vt)exp[(−i/h̄)(−mxV +(1/2)mV 2t)] . (15.21)

That is, we need to transform the wavefunction, treating it as a scalar,
and then add an extra phase which is consistent with what we found ear-
lier. As we have said before, all this is perfectly consistent as regards the
application of the Galilean transformation in quantum mechanics.

Classically we saw that the action was invariant in special relativity,
while it picked up an end-point contribution in the non-relativistic case.
What is the analogue for the relativistic case when we treat the parti-
cle quantum mechanically? In this case, one could use the Klein-Gordon
equation to describe a spin-zero particle. Since Klein-Gordon equation is
fully Lorentz invariant, its solution will transform as a scalar when we go
from one frame to another. No additional phase should appear. If so, how
is it that the Klein-Gordon equation is invariant under the Lorentz trans-
formation, but the Schrödinger equation — which is presumably obtained
in the c → ∞ limit of the Klein-Gordon equation — is not invariant under
the Galilean transformation, given the fact that the Lorentz transformation
reduces to the Galilean transformation in the appropriate limit?

This has to do with the manner in which one obtains the Schrödinger
equation from the Klein-Gordon equation and brings to the center stage
the role of the mc2 term in the phase. We will outline how the extra phase
in Eq. (15.21) can be obtained from a fully invariant Klein-Gordon equa-
tion.

Consider the wavefunction Φ(t,x) which is the solution to a free par-
ticle Klein-Gordon equation. We know that under a Lorentz transforma-
tion, Φ(t,x) =⇒ Φ ′(t ′,x′), thus transforming as a scalar. To obtain the
Schrödinger equation for a wavefunction ψ(t,x) we first have to separate
the mc2t term from the phase of the Φ by writing

Φ(t,x) = ψ(t,x)exp[−imc2t] . (15.22)

It is then straightforward to show that in the limit of c → ∞, ψ(t,x)
will satisfy a free particle Schrödinger equation. (We will demonstrate
a more general result in the presence of a gravitational field later on,
and hence we skip the algebraic details here; see Eq. (15.28).) To ob-
tain the Schrödinger equation in S′, we have to similarly write Φ ′(t ′,x′) =
ψ ′(t ′,x′)exp(−imc2t ′). The fact that Φ transforms as a scalar can now be
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used to relate ψ and ψ ′, and we find a remarkable result:

ψ ′ = ψ exp[−imc2(t − t ′)] . (15.23)

We see that, in addition to the scalar transformation, the wavefunction
picks up a phase which is just mc2(t − t ′). Incredibly enough, this expres-
sion has a finite, non-zero limit when c → ∞! Evaluating this quantity in
the limit of c → ∞, we get

mc2(t − t ′) = mc2γ
(

t ′+
V x′

c2

)
−mc2t ′

= mc2
[

t ′+
V x′

c2 +
1
2

V 2t ′

c2 +O

(
1
c4

)]
−mc2t ′

= mV x′+
mV 2t ′

2
+O

(
1
c2

)
. (15.24)

This is precisely the mysterious phase which occurs in the Schrödinger
equation under a Galilean transformation! It has a simple interpretation as
being equal to mc2(t − t ′), thus emphasizing the role of rest energy even
in the non-relativistic limit. This result tells you the innocuous phase we
needed to add to the wavefunction in the case of non-relativistic quantum
mechanics actually arises from special relativity and has an elementary
interpretation in special relativity. Once again, more exact theories make
better sense than approximate ones!

One might think this is probably just a coincidence, but it is not. To
see that, let us consider a more complicated situation — not that of uni-
form motion but the one with an acceleration. We are now looking at the
Klein-Gordon and Schrödinger equations for a free particle in non-inertial
frames and we want to know whether the phase acquired in non-relativistic
quantum mechanics is actually related to the time difference as measured
by different clocks. As we will see, this is indeed the case!

In the relativistic case, we have a quantum scalar field satisfying the
free-particle Klein-Gordon equation in one frame of reference (S), which
we call (x, t); the frame (x, t) being arbitrarily accelerated with time-
dependent acceleration g(t) with respect to an inertial coordinate system
S′ = (X ,T ). In S (known as the generalized Rindler frame) the metric is
given by (see the Appendix 2):

ds2 =−
(

1+
g(t)x

c2

)
dt2 +dx2 . (15.25)

The explicit co-ordinate transformation (see e.g., [65]) between S and the
inertial frame S′ is given by Eq. (15.43) in Appendix 2. The Klein-Gordon
equation for a scalar field Φ(x, t) in an arbitrary frame is given by

1√−g
∂i(

√−ggik∂kΦ) = μ2Φ ; μ ≡ mc
h̄

. (15.26)



15 The One-body Problem 161

It’s really quite
simple

Clocks run differ-
ently in different
frames ...

... or in the presence
of gravity

(The complicated looking expression is just the � in curvilinear coordi-
nates. You know that while ∇2 = ∂ 2/∂x2+∂ 2/∂y2+∂ 2/∂ z2 in Cartesian
coordinates, it becomes more complicated in the spherical polar coordi-
nates. What we have here is just a similar result for �.) Using the form of
the metric as given in Eq. (15.25), we can expand this as:

− 1
(1+g(t)x)2

∂ 2Φ
∂ t2 + x

dg
dt

∂Φ
∂ t

1
(1+g(t)x)3 +

∂ 2Φ
∂x2

+
∂Φ
∂x

g
(1+g(t)x)

= μ2Φ . (15.27)

We now substitute Φ(x, t) = ψ(x, t)e−iμt into Eq. (15.27), we get on re-
taining terms to the lowest order (upto, but excluding, order gx/c2), the
equation:

ih̄
∂ψ
∂ t

=− h̄2

2m
∂ 2ψ
∂x2 +mg(t)xψ , (15.28)

which is identical to the Schrödinger equation for a particle of mass
m in an accelerated frame of reference moving with acceleration −g(t)
or equivalently, in a time-dependent gravitational field of strength g(t).
Hence, we see that the Klein-Gordon equation does reduce, in the appro-
priate limit, to the Schrödinger equation, with the term mg(t)x indicating
the accelerated nature of the frame.

All this is fine, but what about the phase factor? The solution to
the Klein-Gordon equation is invariant when we go from S to S′; i.e.,
Φ ′(T,X) = Φ(t,x). But the solution to the Schrödinger equation,
Eq. (15.28) acquires an extra phase f given in Eq. (15.14). Where does
this come from?

In fact, it has a direct physical meaning. We can transform the free par-
ticle solution to the Klein-Gordon equation in the inertial frame, Φ(T,X),
as a scalar to the non-inertial frame, thus obtaining Φ(t,x). But the non-
relativistic limits of Φ(T,X) and Φ(t,x) will differ by a phase term
mc2(t − T ), which, in the appropriate limit, will give the correct phase
dependence arrived at in Eq. (15.14) when we consider the effect of grav-
itational time dilation!

In the presence of a gravitational potential φ , the proper time lapse dT
of a co-moving clock is related to the coordinate time lapse dt by (see
Chapter 11):

ds2 = −c2dT 2 =−c2
(

1+
2φ
c2

)
dt2 +dx2

= −c2dt2
[(

1+
2φ
c2

)
− V 2

c2

]
, (15.29)
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so that, when V = ξ̇ ,φ = xξ̈ , we get

mc2(t −T ) = −mc2

⎡
⎣∫ dt

(
1− ξ̇ 2

c2 +
2xξ̈
c2

)1/2

− t

⎤
⎦

≈ −m
∫

dt

(
− ξ̇ 2

2
+ xξ̈

)
=−mxξ̇ +

1
2

m
∫

dtξ̇ 2 , (15.30)

which is precisely the phase f found in Eq. (15.12)! Once again, we see
that a result in non-relativistic quantum mechanics acquires a simple in-
terpretation when we treat it as a limit of relativistic theory, thanks to the
factor mc2(t −T ) in the phase. The result also shows that in the instanta-
neous rest frame of the particle, the phase of the wavefunction evolves as
mc2dτ , where τ is the proper time shown by the co-moving clock, thereby
again validating the principle of equivalence in quantum mechanics.

Box 15.2: Why does the harmonic oscillator have coherent states?

You would have learnt that the standard harmonic oscillator admits
coherent state solutions in which the probability distribution varies
as

|φA(t,x)|2 ∝ exp[−ω(x−Acosωt)2] . (15.31)

This is obtained by just shifting the ground state probability distri-
bution by x → x−Acosωt. What is more surprising (in case youAn unexpected

bonus did not know) is that such coherent states exist even for the excited
states of the oscillator with the same shift ! (People have tried to find
coherent states for other potentials but none of them look as neat as
those for the oscillators.) Why does the harmonic oscillator admit
such a nice set of states? The existence of such states is a mystery in
the conventional approach to quantum mechanics, but our approach
based on Eq. (15.9) provides a valuable insight.

To understand this, let us apply the transformation x→ x̄= x+�(t)
to the harmonic oscillator Lagrangian L=(1/2)(ẋ2−ω2x2). Elemen-
tary algebra shows that the new Lagrangian has the structure

L̄ = (1/2)(ẋ2 −ω2x2)− (�̈+ω2�)x+
d f
dt

, (15.32)

where f is again a function determined by �(t) but its explicit form is
not important. Let us now choose �(t) to be a solution to the classical
equation of motion �̈+ω2� = 0. To be specific, we will take � =
−Acosωt. If you want, you can think of this as shifting to a frame
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which is oscillating with the particle. We then see that the second This miracle occurs
only for the
quadratic potential!

term in Eq.(15.21) vanishes and L̄ has the same form as the original
harmonic oscillator Lagrangian except for the total derivative.

The solutions to the Schrödinger equation are, therefore, the same
as the standard solutions to the harmonic oscillator problem with
a shift x → x + �(t) and an extra phase factor! The probabilities
do not care for the phase factor, and we have the result |ψ̄|2 =
|ψ(x+ �(t), t)|2. If ψ is the ground state, then this shift leads to the
standard coherent state. But if you take the nth excited state of the
oscillator ψn(x, t), shift the coordinate and add a phase, then we get
another valid solution ei fψn(x−Acosωt, t). As far as the probability That is why coherent

states exist even for
the excited states of
the harmonic
oscillator.

goes, |ψn(x−Acosωt, t)|2 merely traces the original probability dis-
tribution with the mean value oscillating along the classical solution.
In our approach, we see that a harmonic oscillator gets mapped back
to a harmonic oscillator when we move to a frame with �̈+ω2� = 0
with just a shift in x (and a phase which is irrelevant for the probabil-
ities).

Appendix 1: In this appendix we prove that the wavefunction Eq. (15.14)
satisfies the Schrödinger equation, Eq. (15.15). We set m = h̄ = 1 for con-
venience, so that Eq. (15.15) becomes:

i
∂Ψ
∂ t

=−1
2
∂ 2Ψ
∂x2 − ξ̈xΨ . (15.33)

The co-ordinate transformation is given by x′ = x − ξ (t), t ′ = t. We
now substitute Ψ(x, t) = Ψ ′(x′, t ′)e−i f into the above equation, where
f =−xξ̇ + 1

2
∫
ξ̇ 2dt. We have the following relations:

i
∂ (Ψ ′e−i f )

∂ t
= i

∂Ψ ′

∂ t
e−i f + e−i fΨ ′ ∂ f

∂ t
(15.34)

and
∂
∂x

(Ψ ′e−i f ) = e−i f ∂Ψ ′

∂x′
− ie−i f ∂ f

∂x
Ψ ′ . (15.35)

Hence,

∂ 2

∂x2 (Ψ
′e−i f ) = e−i f ∂ 2Ψ ′

∂x′2
−2i

∂Ψ ′

∂x′
∂ f
∂x

e−i f − e−i f
(
∂ f
∂x

)2

Ψ ′ , (15.36)

where we have used the facts that ∂Ψ ′/∂x = ∂Ψ ′/∂x′ and ∂ 2 f/∂x2 = 0.
Using these relations, Eq. (15.33) becomes:

i
∂Ψ ′

∂ t
+Ψ ′ ∂ f

∂ t
= −1

2
∂ 2Ψ ′

∂x′2
+ i

∂Ψ ′

∂x′
∂ f
∂x

+
1
2

(
∂ f
∂x

)2

Ψ ′ − ξ̈Ψ ′x . (15.37)
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We also know that
∂Ψ ′

∂ t
=

∂Ψ ′

∂ t ′
− ξ̇

∂Ψ ′

∂x′
(15.38)

and
∂ f
∂x

=−ξ̇ ;
∂ f
∂ t

=−ξ̈x+
1
2
ξ̇ 2 . (15.39)

Using the above relations in Eq. (15.37), it readily transforms to:

i
∂Ψ ′

∂ t ′
=−1

2
∂ 2Ψ ′

∂x′2
, (15.40)

which is satisfied identically, since we know that Ψ ′(x′, t ′) is a solution
to the free particle Schrödinger equation in the (x′, t ′) frame of reference.
Hence, we see that the wavefunction in Eq. (15.14) satisfies Eq. (15.15).

Appendix 2: We will indicate how to obtain the coordinate system and
the metric for an observer moving with an arbitrary, time dependent ac-
celeration along the x−axis.

Consider an accelerated observer with the trajectory T=h(τ), X= f (τ)
and a coordinate velocity u(τ)≡ d f/dh where τ is the proper time. At any
given instant, there exists a Lorentz frame (t,xxx) with: (a) the three coor-
dinate axes coinciding with the axes of the accelerating observer, and (b)
the origin coinciding with the location of the observer. The Lorentz trans-
formations (with suitable translation of origin) from the global inertial
frame coordinates (T,X) to this instantaneously comoving frame is given
by (with c = 1)

X − f (τ) = γ(u)(x+ut) ; T −h(τ) = γ(u)(t +ux) . (15.41)

We now define the coordinates for the accelerated observer such that, at
t = 0 the coordinate labels in the accelerated frame coincide with those in
the comoving Lorentz frame. This gives

X = f (τ)+ γ(u)x; T = h(τ)+ γ(u)ux . (15.42)

This result can be rewritten in a more explicit form as:

X =
∫ ′

sinhχ(t)dt + xcoshχ(t) =
∫

dt [1+g(t)x] sinhχ(t)

T =
∫ ′

coshχ(t)dt + xsinhχ(t) =
∫

dt [1+g(t)x] coshχ(t) , (15.43)

where the function χ(t) is related to the time dependent acceleration g(t)
by g(t) = (dχ/dt).

We can now find the corresponding metric in the accelerated frame by
computing −dX2+dT 2 in terms of dx and dt. This calculation shows that
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the line element in these coordinates is remarkably simple and is given by

ds2 =−(1+g(t)x)2dt2 +(dx2 +dy2 +dz2) . (15.44)

It is amazing that such a simple expression can be obtained for an arbi-
trary acceleration g(t). When the acceleration is constant, it reduces to the
expressions used in the main text.
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16The Straight and Narrow Path
of Waves

The unification of electricity and magnetism through Maxwell’s equations
led to our understanding of light as an electromagnetic wave. This histor-
ical milestone allowed us to think of light as made of oscillating electric
and magnetic fields, each of which obeys a wave equation. In this chap-
ter we want to look at the wave nature of light from a particular point
of view [66] which we will connect up with a seemingly different phe-
nomenon in Chapter 17.

For our purpose the vector nature of the electromagnetic field is not rel-
evant (since we will not be interested, e.g., in the polarization of the light).
Hence, we will just deal with one component — called A(t,xxx), say, — of
the relevant vector field which satisfies the wave equation. The solution to
the wave equation �A = 0 is described by the (real and imaginary parts of
the) function exp i[kkk · xxx−ωt]. Here kkk denotes the direction of propagation
of the wave which also determines its frequency through the dispersion
relation ω = |kkk|c. Since the wave equation is linear in A, superposition of
the solutions with different values of kkk, each with an amplitude F1(kkk), say,
leads to:

A(t,xxx) =
∫

F1(kkk)eikkk·xxxe−iωt d3k
(2π)3 . (16.1)

We now specialize to a situation which arises in the study of optical
phenomenon. Quite often, we are concerned with waves which are propa-
gating broadly along some given direction, say, along the positive z−axis.
For example, consider the study of diffraction by a circular hole in a screen
which is located in the z = 0 plane. We will consider, in such a context,
light incident on the screen from the left and getting diffracted; the prop-
agation being essentially along the z−axis with a diffraction spread in the
transverse direction. Mathematically, this means that the function F1(kkk)
is nonzero only for wave vectors with kz > 0. Further, since the wave has
a definite frequency ω , the magnitude of the wave vector is fixed at the
value ω/c. It follows that one of the components of the wave vector, say
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kz, can be expressed in terms of the other three. So, the function F1 has the
structure:

F1(kz,kkk⊥) = 2π f (kkk⊥)δD

(
kz −

√
ω2/c2 − kkk2

⊥

)
, (16.2)

where the subscript ⊥ denotes the components of the vector in the trans-
verse x−y plane and f (kkk⊥) is an arbitrary function of kkk⊥. Note that — in
general — we could have had

kz =±
√
ω2/c2 − kkk2

⊥ , (16.3)

and we have consciously picked out one with kz > 0 leading to propaga-
tion in the direction of positive z−axis.

Substituting this expression in Eq. (16.1), we find that A(t;z,xxx⊥) can
be written in the form a(z,xxx⊥)e−iωt (in which the oscillations in time have
been separated out) where

a(z,xxx⊥) =
∫ d2kkk⊥

(2π)2 f (kkk⊥)eikkk⊥·xxx⊥ exp
[

iz
c

√
ω2 − c2k2

⊥

]
. (16.4)

Since the time variation of a monochromatic wave is always exp(−iωt),
we shall ignore this factor and concentrate on the spatial dependence of
the amplitude, a(z,xxx⊥).

To proceed further, we consider the case in which all the components
building up the wave are traveling essentially along the positive z−axis
with a small transverse spread. For such a wave traveling, by and large,
along the z direction, the transverse components of kkk are small compared
to its magnitude; that is, c2k2

⊥ � ω2. Using the Taylor series

√
ω2 − c2k2

⊥ ∼= ω
(

1− 1
2

c2k2
⊥

ω2

)
= ω− 1

2
c2k2

⊥
ω

, (16.5)

in Eq. (16.4), we get:

a(z,xxx⊥)∼= eiωz/c
∫ d2kkk⊥

(2π)2 f (kkk⊥)exp
[
i
(
kkk⊥ · xxx⊥− (c/2ω)k2

⊥z
)]

. (16.6)

This equation describes the propagation of a wave along the positive
z−axis with a small spread in the transverse direction. The function f (kkk⊥)
can be determined by a simple Fourier transform if the amplitude a(z′,xxx′⊥)
at some location z′ is known. Doing this, we can relate the amplitudes of
the wave at two planes with coordinates z and z′ by

a(z,xxx⊥) = eiω(z−z′)/c
∫

d2xxx′⊥a(z′,xxx′⊥) G
(
z− z′;xxx⊥− xxx′⊥

)
, (16.7)
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where

G
(
z− z′;xxx⊥− xxx′⊥

)
=
∫ d2kkk⊥

(2π)2 eikkk⊥·(xxx⊥−xxx′⊥)e−(ic/2ω)k2
⊥(z−z′)

=
( ω

2πic

) 1
|z− z′| exp

[
iω
2c

(
xxx⊥− xxx′⊥

)2

(z− z′)

]
.(16.8)

The function G may be thought of as a propagator which propagates the
amplitude from the location (z′,xxx′⊥) to the location (z,xxx⊥). The factor
eiω(z−z′)/c in Eq. (16.7) does not contribute to the intensity (which is pro-
portional to |a(z,xxx⊥)|2) and we will drop it when not necessary.

Some thought shows that we have achieved something quite extraordi-
nary. We know that the wave amplitude satisfies a second order differential
equation (viz. the wave equation) and hence its evolution cannot be deter-
mined by just knowing the amplitude (i.e.., one single function, a(z′,xxx′⊥))
at a given plane (z′,xxx′⊥). But that is exactly what we have done! This was
possible in Eq. (16.7) because of the assumption that the wave is trav-
eling only forward in the z direction. The actual form of the propagator
depended on the assumption that the transverse components of the wave
vector were small compared to kz. The study of wave propagation under
these approximations is called paraxial optics.

Let us take a closer look at the structure of the propagator G in
Eq. (16.8) which introduces a factor |z− z′|−1 to the amplitude and —
more importantly — contributes an amount

φ =
ω
2c

(
xxx⊥− xxx′⊥

)2

(z− z′)
, (16.9)

to the phase. The change in the amplitude merely reflects the r−2 fall off
of the intensity (which is proportional to the square of the amplitude) of
the wave. But what is the meaning of the phase factor? To understand the
origin of the change in phase, note that a path difference Δs between two
points in space will introduce a phase difference of kΔs in a propagating
wave. In our case, it is clear that the phase difference is

kΔs =
ω
c

[√(
xxx⊥− xxx′⊥

)2
+(z− z′)2 − (z− z′

)]∼= ω
c

[
1
2

(
xxx⊥− xxx′⊥

)2

(z− z′)

]
,

(16.10)

provided the transverse displacements are small compared to the longitu-
dinal distance – an assumption which is central to paraxial optics. With
hindsight, we could have guessed the form of G without doing any al-
gebra! In paraxial optics, it introduces a phase corresponding to the path
difference and decreases the amplitude to take care of the normal spread
of the wave.
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Equation (16.7) allows us to compute the wave amplitude at any loca-
tion on the plane z = z2, if the amplitude on a plane z = z1 < z2 is given.
As an application, we now consider a standard situation which arises quite
often in optics. A wave front propagates freely up to a plane z = z1 where
it passes through an optical system (say a lens, screen with a hole, atmo-
sphere, etc...) which modifies the wave in a particular fashion. The optical
system extends from z = z1 to z = z2 and the wave propagates freely for
z> z2. We will be interested in the amplitude at z> z2, given the amplitude
at z < z1.

It is clear that our Eq. (16.7) can be used to propagate the amplitude
from some initial plane z = zO < z1 to z = z1 and from z = z2 to some
final plane z = zI > z2. (The subscripts O and I stand for the object and
the image, based on the idea of the optical system being a lens.) The prop-
agation of the wave from z1 to z2 depends entirely on the optical system
and — in fact — defines the particular optical system. An optical system
is called linear if the output is linear in the input. In such a case, the am-
plitude at the exit point of the optical system is related to the amplitude at
the entrance point by a relation of the form:

a(z2,xxx2) =
∫

d2xxx1P(z2,z1;xxx2,xxx1)a(z1,xxx1) , (16.11)

where the functional form of P determines the kind of optical system.
(Here, and in what follows, we shall omit the subscript ⊥ with the un-
derstanding that the vector xxx is in the transverse plane and is two dimen-
sional.) In this case, the amplitude at the image plane can be expressed in
terms of the amplitude at the object plane by the relation

a(zI ,xxxI) =
∫

d2xxxOG (zI ,zO;xxxI ,xxxO)a(zO,xxxO) , (16.12)

where

G (zI ,zO;xxxI ,xxxO) =
∫

d2xxx2d2xxx1 G(zI − z2,xxxI − xxx2) P(z2,z1;xxx2,xxx1)

× G(z1 − zO,xxx1 − xxxO) . (16.13)

Given the properties of any linear optical system, one can compute the
quantity P, and thus evaluate G and determine the properties of wave
propagation.

As a simple example, let us compute the form of the function P for a
convex lens. If the lens is sufficiently thin, P will be nonzero only at the
plane of the lens z2 = z1 = zL. Since the lens does not absorb radiation, it
cannot change the amplitude |a(zL,xxxL)| of the incident wave and can only
modify the phase. Therefore, P must have the form P = exp[iθ(xxxL)]. Then
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the amplitude at the image plane is given by:

a(zI ,xxxI) =
∫

d2xxxLa(zL,xxxL)P(zL,xxxL)G(zI − zL,xxxI − xxxL)

= a
∫

d2xxxLeiθ(zL,xxxL)G(zI − zL,xxxI − xxxL) , (16.14)

where we have used the fact that the amplitude a(zL,xxxL) on the lens plane
is constant for a plane wave incident from a large distance. To determine
the form of θ(xxxL), we use the basic defining property of lens of focal
length f : If a plane wavefront of constant intensity is incident on the lens
plane z = zL, the rays will be focused at a point zI = zL+ f , when the wave
nature of the light is ignored. In the limit of zero wavelength of the wave,
most of the contributions to the integral come from points at which the
phase of the integrand in Eq. (16.14) is stationary. Since the phase of G is
(k/2)[(Δxxx)2/Δz], the principle of stationary phase gives the equation,

∂θ
∂xxxL

=
k
f
(xxxI − xxxL) , (16.15)

where f = zI − zL. For the image to be formed along the z−axis, this
equation should be satisfied for xxxI = 0. Setting xxxI = 0, and integrating this
equation, we find that θ = (−kx2

L/2 f ) and

P(xxxL) = exp
(
− ik

2 f
x2

L

)
. (16.16)

Thus the effect of a lens is to introduce a phase variation which is
quadratic in the transverse coordinates. Such a lens will focus the light
to a point on the z−axis, in the limit of zero wavelength.

A geometrical interpretation of this result is given in Fig. 16.1. The
constant phase surfaces are planes to the left of the lens, and are arcs of
circles (centered on the focus F) to the right of the lens. Changing the
constant phase surfaces from the plane to a circle (of radius f ) through
the action of the lens at z = zL introduces a path difference of Δ l =
[ f − ( f 2−x2

L)
1/2]	 (x2

L/2 f ) at a transverse distance xL. This corresponds
to a phase difference kΔ l = (kx2

L/2 f ) = θ introduced by the lens.

Let us next consider the effect of this lens on a point source of radiation
along the z axis at z = zO. [That is, the initial amplitude is taken to be
to be a(zO,xxxO) ∝ δD(xxxO).] This can be obtained by first propagating the
field from zO to zL, modifying the phase due to the lens at z = zL and
propagating it further to some point z with the transverse coordinate set to
zero. The net result is given by

a(z,0) =− k2

4π2uv

∫
d2xxxL exp

(
− ik

2 f
x2

L

)
· exp

[
ikx2

L
2u

+
ikx2

L
2v

]
, (16.17)
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Lens plane

(f 2 − x2
L)1/2

y

f

f

x
∼ (x2

L/2f )

F

xL

z

Fig. 16.1: The focusing action of a convex lens in terms of the phase change of wave
fronts.

It does!

Actually we can
do better

where u = zL − zO and v = z− zL. In the limit of zero wavelength (called
ray optics), the maximum contribution to this integral can again be ob-
tained by setting the variation of the phase to zero. This gives

− k
f

xxxL +
k
u

xxxL +
k
v

xxxL = 0 , (16.18)

or
1
u
+

1
v
=

1
f
, (16.19)

which is a familiar formula in the theory of lenses.

The above result was obtained in the limit of ray optics. To study the
wave propagation through the lens, we note that the action of a lens on the
phase of an initial intensity distribution is governed by the integral

a(z,xxx) ∝
∫

d2xxxLa(zL,xxxL)exp
(
− ik

2 f
x2

L

)
exp

ik
2(z− zL)

(xxx− xxxL)
2 .

(16.20)
Here, a(zL,xxxL) is the incident amplitude on the lens; the first exponential
gives the distortion in phase produced by the lens and the second expo-
nential gives the propagation amplitude zL to z. At the focal plane, which
is a plane located at a distance f from the lens, at z = zL + f , the second
exponential characterizing the propagation becomes:

exp
ik (xxx− xxxL)

2

2(z− zL)
= exp

ik
2 f

(
x2 + x2

L −2xxx · xxxL
)
. (16.21)
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Lens calculates a
Fourier transform!

The quadratic term (ikx2
L/2 f ) in the propagation amplitude is now pre-

cisely canceled by the phase distortion introduced by the lens, so that the
resultant amplitude can be written as

a(zL + f ,xxx) ∝ exp
(

ik
2 f

x2
)∫

d2xxxLa(zL,xxxL)exp
(

ik
f

xxx · xxxL

)
. (16.22)

The intensity at the focal plane is given by the |a(zL + f ,xxx)|2 in which
the phase factor exp[ikx2/2 f ] does not contribute. This is clearly deter-
mined by the Fourier transform of the incident amplitude. Thus we find
that our humble lens acts as an analogue machine which performs the
Fourier transform of a function.

Box 16.1: Diffraction from Faraday’s law

Why does light, treated as electromagnetic wave exhibit diffraction
when it passes through a small aperture in a screen? In the stan-
dard approach, one first obtains the electromagnetic wave equation
by combining the individual Why diffraction?Maxwell equations suitably and then
derives diffraction as a standard result in wave propagation. At this
stage, the diffraction of light is no different from the diffraction of
sound. But unlike sound, we know that the electromagnetic field has
to satisfy each of the Maxwell equations separately. Using this fact,
one can provide an intuitive understanding of diffraction at an aper-
ture.

Lens plane

(f 2 − x2
L)1/2

y

f

f

x
∼ (x2

L/2f )

F

xL

z

Fig. 16.2: A simple way to understand diffraction using Faraday’s law. An elec-
tromagnetic wave propagates along z−axis, passing through a square aperture
in a screen with the electric field along the x−axis and magnetic field along
the y−axis originally. After passing through the aperture, the line integral of the
electric field along the curve shown will be non-zero which requires a time vary-
ing z−component for the magnetic field. This requires the propagation direction
to change slightly, which leads to the diffraction spread.
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Consider a linearly polarized electromagnetic wave, with the elec-
tric field along the x−axis and propagating along the z−axis. Suppose
this wave passes through a square aperture of size � located in the
z = 0 plane. We study the line integral of the electric field along the
contour indicated in Fig. 16.2. This contour is parallel to the screen
and is very close to it on the other side of the source. This line in-
tegral is essentially given by �Ex on the side away from the source.
Numerically, this is also equal to �By. But Faraday told us that thisThe crucial input
must be equal to the rate of change of magnetic flux through the loop.
In other words, we must have a z−component of the magnetic field
generated on the far side even though none was present originally!
Taking ∂Bz/∂ t =−iωBz, we get the result

�By = �Ex =
∮

EEE ·dsss =−1
c
∂
∂ t

∫
BBB ·daaa =−1

c
(−iωBz)

�2

2
. (16.23)

The first equality comes from Ex = By for an electromagnetic wave,
the second from the estimate of the line integral, the third from Fara-
day’s law and the fourth from an estimate of the surface integral. We
therefore get the longitudinal component of the magnetic field gener-
ated after the screen to be given by

Bz

By
∼=− iλ

π�
, (16.24)

where λ is the wavelength of the radiation. This clearly gives the esti-
mate of the standard diffraction angle to be about λ/�. (The i−factor
in the above relation also contains important information about the
phase but we will not go into it here.)



Initial value
problem in quantum
mechanics

Action: the common
factor

17If Quantum Mechanics is the
Paraxial Optics, then ...

In quantum mechanics, the wavefunction of the particle, ψ(t,xxx) con-
tains complete information about the state of the system and satisfies the
Schrödinger equation. Given the wavefunction ψ(0,xxx) at t = 0, we can
integrate this equation and obtain the wavefunction at any later time. So,
all the dynamics is contained in the probability amplitude 〈x2|x1〉 for the
particle to propagate from one event x1 to another event x2. (For example,
the beaten-to-death electron two slit experiment involves an electron gun
to create electrons and a detector on the screen to detect them). Classi-
cally, the particle will move from one event x1 to another event x2 along a
single, deterministic, trajectory. But we know that, in quantum mechanics,
there is no notion of trajectories at all. Is there some nice way of express-
ing this quantum amplitude 〈x2|x1〉 in terms of what we know in classical
physics?

A hint that it may be possible arises from our results in Chapter 2 where
we saw that the classical action plays a crucial role even in quantum the-
ory and — in fact — it is quantum mechanics which validates the princi-
ple of least action in classical theory [67]. We could define an action for
all possible trajectories by Eq. (2.30) and recover the classical trajectory
through the condition for stationary phase. Since the classical action A and
the quantum amplitudeΨ are related byΨ ∝ exp(iA/h̄), it seems natural
to postulate that the amplitude for a particle to follow a particular trajec-
tory xxx(t) is proportional to exp(iA[xxx(t)]/h̄) where A[xxx(t)] is the action for
that trajectory. This postulate assures us at least one thing: In the classi-
cal limit of h̄ → 0, the condition for constructive interference will pick
out the classical path! Since all paths are possible in the fully quantum
mechanical situation, the net amplitude 〈x2|x1〉 for the particle to go from
one event x1 to another event x2 must be the sum over exp(iA[xxx(t)]/h̄) for
all paths connecting the two events. So, it seems natural to expect:

〈x2|x1〉=∑
xxx(t)

exp
[

iA[xxx(t)]
h̄

]
=∑

xxx(t)
exp

i
h̄

∫ t2

t1

1
2

m|ẋxx|2 dt . (17.1)
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You don’t really sum
over all paths!

Why we don’t want
certain type of paths

The paths summed over are restricted to those that satisfy the following
condition: Any given path xxx(t) cuts the spatial hypersurface t = y0 at any
intermediate time, t2 > y0 > t1, at only one point. In other words, while
doing the sum over paths, we are restricting ourselves to paths of the kind
shown in Fig. 17.1 that always go ‘forward in time’ and do not include,
for example, paths like the one shown in Fig. 17.2 (which go both forward
and backward in time).

x2

y0

t

x

x1

Fig. 17.1: Examples of paths included in the sum over paths in Eq. (17.1)

The path in Fig. 17.2 cuts the constant time surface t = y0 at three
events, suggesting that at t = y0 there were three particles simultaneously
present even though we started out with one particle. It is this feature
which we avoid (and stick to single particle propagation) by imposing this
condition on the class of paths that is included in the sum. By the same
token, we will assume that the amplitude 〈x2|x1〉 vanishes for x0

2 < x0
1; that

is, the propagation is forward in time.

x2

y0

t

x

x1

Fig. 17.2: A path that goes forward and backward which is not included in the sum
over paths in Eq. (17.1).
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A nontrivial
demand ...

... but quite
essential

Three assumptions
in quantum
mechanics: All
invalid in QFT!

This choice of paths, in turn, implies the following ‘transitivity con-
straint’ for the amplitude:

〈x2|x1〉=
∫

dDyyy〈x2|y〉〈y|x1〉 . (17.2)

The integration at an intermediate event y ≡ yi = (y0,yyy) (with t2 > y0 > t1)
is limited to integration over the spatial coordinates because each of the
paths summed over cuts the intermediate spatial surface at only one point.
Therefore, every path which connects the events x2 and x1 can be uniquely
specified by the spatial location yyy at which it crosses the surface t = y0.
So the sum over all paths can be divided into the sum over all paths from
xi

1 to some location yyy at t = y0, followed by the sum over all paths from yi

to xi
2 with an integration over all the locations yyy at the intermediate time

t = y0. This leads to Eq. (17.2).

The transitivity condition in Eq. (17.2) is vital for the standard proba-
bilistic interpretation of the wavefunction in non-relativistic quantum me-
chanics. If ψ(t1,xxx1) is the wavefunction giving the amplitude to find a
particle at xxx1 at time t1, then the wavefunction at a later time t = y0 is
given by the integral:

ψ(y0,yyy) =
∫

dDxxx111 〈y|x1〉ψ(t1,xxx1) , (17.3)

which interprets 〈y|x1〉 as a propagator kernel allowing us to determine
the solution to a differential equation (viz. the Schrödinger equation) at
a later time t = y0 from its solution at t = t1. Writing the expression for
ψ(t2,xxx2) in terms of ψ(y0,yyy) and 〈x2|y〉 and using Eq. (17.3) to express
ψ(y0,yyy) in terms of ψ(t1,xxx1), it is easy to see that Eq. (17.2) is needed for
consistency. Equation (17.2) or Eq. (17.3) also implies the condition:

〈t,xxx|t,yyy〉= δ (xxx− yyy) , (17.4)

where |t,xxx〉 is a position eigenstate at time t.

Three crucial factors have gone into these seemingly innocuous results:
(i) The wavefunction at time t can be obtained from knowing only the
wavefunction at an earlier time (without, e.g., knowing its time deriva-
tive). This means that the differential equation governing ψ must be first
order in time. (ii) One can introduce eigenstates |t,xxx〉 of the position op-
erator x̂xx(t) at time t by x̂xx(t)|t,xxx〉 = xxx|t,xxx〉 so that ψ(t,xxx) = 〈t,xxx|ψ〉 with
Eq. (17.4) allowing the possibility of localizing a particle in space with
arbitrary accuracy. (iii) One can interpret 〈x2|x1〉 in terms of the position
eigenstates as 〈t2,xxx2|t1,xxx1〉. It turns out all these conditions run into trou-
ble when we deal with a relativistic particle! This is why quantum field
theory is very different from single particle quantum mechanics.
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Free particle from
first principles

Almost there

Just one more
input ...

... and we have the
final result

Before proceeding further, let us consider the case of a free-particle
in this formalism. Here, we can make a lot of progress by just using the
result that the integral in Eq. (17.2) has to be independent of y0, since
the left hand side is independent of y0. The transitivity condition, plus the
fact that the free particle amplitude 〈x2|x1〉 can only depend on |xxx2 − xxx1|
and (t2 − t1) because of translational and rotational invariance, fixes the
form of 〈x2|x1〉 to a great extent. To see this, express 〈x2|x1〉 in terms of
its spatial Fourier transform in the form

〈y|x〉=
∫ dD ppp

(2π)D θ(y0 − x0) F(|ppp|;y0 − x0)eippp·(yyy−xxx) , (17.5)

and substitute into Eq. (17.2). This will lead to the condition

F(|ppp|;x0
2 − y0)F(|ppp|;y0 − x0

1) = F(|ppp|;x0
2 − x0

1) (x0
2 > y0 > x0

1) ,
(17.6)

which has a unique solution F(|ppp|; t) = exp(α(|ppp|)t) where α(|ppp|) is a
function of |ppp|. Further, we note that F(|ppp|;y0 − x0) propagates the mo-
mentum space wavefunction φ(x0, ppp) — which is the spatial Fourier trans-
form of ψ(x0,xxx) — from t = x0 to t = y0. Since φ is the Fourier transform
of ψ , this “propagation” is just multiplication by F . The probability cal-
culated from the momentum space wavefunction will be well behaved for
|t| →∞ only if α is pure imaginary, thereby only contributing a phase. So
α = −i f (|ppp|) where f (|ppp|) is an arbitrary function of |ppp|. (You can also
obtain the same result from the fact that exp(iA) goes to exp(−iA) under
the time reversal t2 ⇐⇒ t1; the path integral sum must be defined such that
F → F∗ under t →−t which requires α to be pure imaginary.) Thus, the
spatial Fourier transform of 〈x2|x1〉 must have the form∫

dDxxx〈x2|x1〉e−ippp···xxx = θ(t)e−i f (|ppp|)t . (17.7)

That is, it must be a pure phase. If we interpret this phase as due to the
energy ωppp = ppp2/2m and set f (ppp) =ωppp, then an inverse Fourier transform
of Eq. (17.7) will immediately determine 〈x2|x1〉 leading to the result:

〈x2|x1〉 ≡ K(t,xxx;0,yyy) =
∫ d ppp

(2π)D eippp·(xxx−yyy)e−ip2t/2m

=
( m

2πih̄t

)D/2
exp

[
im
h̄
(xxx− yyy)2

2t

]
, (17.8)

where D is the dimension of space (1, 2 or 3) in which the particle is mov-
ing and we have reintroduced the h̄. The integral is just the D−dimensional
Fourier transform of a Gaussian which separates out in each of the di-
mensions. We can verify directly that K(t,xxx;0,yyy) satisfies Eq. (17.2) and
Eq. (17.4).
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We can do better but
not a lot better

This is useful

The sum over paths in Eq. (17.1) itself is trivial to evaluate for all clas-
sical actions, which are at most quadratic in xxx(t) and ẋxx(t), even without
us defining precisely what the sum means. (The more sophisticated defi-
nitions for the sum work — or rather designed to work — only because
we know the answer for 〈x2|x1〉 from other well-founded methods!) We
first note that the sum over all xxx(t) is the same as the sum over all qqq(t)≡
xxx(t)− xxxc(t) where xxxc(t) is the classical path for which the action is an
extremum. Because of the extremum condition, A[xxxc +qqq] = A[xxxc]+A[qqq].
Substituting into Eq. (17.1) and noting that qqq(t) vanishes at the end points,
we see that the sum over qqq(t) must be only a function of (t2 − t1). (It can
only depend on the time difference rather than on t2 and t1 individually
whenever the action has no explicit time dependence; i.e., for any closed
system). Thus we get

〈x2|x1〉= eiA[xxxc]∑
qqq

eiA[qqq(t)] = N(t) exp iA[xxxc] , (17.9)

where t ≡ t2 − t1. Thus, the quantum probability amplitude is expressible
in terms of the classical action for the classical trajectory, except for a
normalization function N(t), for all quadratic actions. This factor needs
to be determined by some other clever trick in each case. For the free
particle, we immediately get:

〈x2|x1〉= N(t) exp iA[xxxc]≡ N(t)exp
(

i
2

m|xxx|2
t

)
, (17.10)

where t ≡ t2 − t1, xxx ≡ xxx2 − xxx1 and h̄ = 1. In this case, the form of N(t)
is strongly constrained by the transitivity condition, Eq. (17.2) — or,
equivalently, by Eq. (17.7) — which requires the N(t) to have the form
(m/2πit)D/2eat where a = iϕ , say. Thus, except for an ignorable, con-
stant, phase factor ϕ (which is equivalent to adding a constant to the La-
grangian), N(t) is given by (m/2πit)D/2 and we can write the full propa-
gation amplitude for a non-relativistic particle as:

〈x2|x1〉= θ(t)
( m

2πit

)D/2
exp

(
i
2

m|xxx|2
t

)
. (17.11)

The θ(t) tells you that we are considering a particle which is created,
say, at t1 and detected at t2 with t2 > t1. In non-relativistic mechanics, all
inertial observers will give an invariant meaning to the statement t2 > t1.
It is also easy to see that the 〈x2|x1〉 in Eq. (17.11) satisfies the condition
in Eq. (17.4).

I said that we can compute the path integral only for quadratic actions.
This is by and large true but there is one peculiar (and important) case of a
non-quadratic action for which the path integral can be evaluated exactly
by a trick. Given the fact that it is not as well-known as it should be, let



180 17 If Quantum Mechanics is the Paraxial Optics, then ...

A non-quadratic
path integral

Useful result

me describe this. The trick here uses the fact that the action functional
for a particle in classical mechanics can also be expressed in the Jacobi-
Mapertuis form (discussed in Chapter 2) which has a square root in it. We
saw that the trajectory of the particle can be obtained in classical theory
from the action expressed in the form (see Eq. (2.39)):

AJ =
∫ xxx2

xxx1

m
(

dl
dλ

)
dl =

∫ xxx2

xxx1

√
2m(E −V (xα))dl . (17.12)

Since AJ describes a valid action principle for finding the path of a particle
with energy E classically, one might wonder what happens if we try to
quantize the system by performing a sum over amplitudes exp(iAJ). We
would expect it to lead to the amplitude for the particle to propagate from
xα1 to xα2 with energy E. This is indeed true, but since AJ is not quadratic
in velocities even for a free particle, (note that dl involves a square root) it
is not easy to evaluate the sum over exp(iAJ). But since we already have
an alternative path integral procedure for the system, we can use it to give
meaning to this sum, thereby evaluating the sum over paths for at least
one non-quadratic action.

Our idea is to write the sum over all paths in the original action princi-
ple (with amplitude exp(iA)) as a sum over paths with energy E followed
by a sum over all E. Using the result in Eq. (2.10), we get

t,xxx2

∑
0,xxx1

exp(iA) =∑
E

xxx2

∑
xxx1

e−iEt exp iAJ [E,xxx(τ)] ∝
∫ ∞

0
dE e−iEt

xxx2

∑
xxx1

exp(iAJ) .

(17.13)

In the last step, we have treated the sum over E as an integral over E ≥ 0
(since, for any Hamiltonian which is bounded from below, we can always
achieve this by adding a suitable constant to the Hamiltonian) but there
could be an extra proportionality constant which we cannot rule out. This
constant will depend on the measure used to define the sum over exp(iAJ)
but can be fixed by using the known form of the left hand side, if required.
Inverting the Fourier transform, we get:

P(E;xxx2,xxx1) ≡
xxx2

∑
xxx1

exp(iAJ) =C
∫ ∞

0
dt eiEt

t,xxx2

∑
0,xxx1

exp(iA)

= C
∫ ∞

0
dt eiEt〈x2|x1〉 , (17.14)

where we have denoted the proportionality constant by C. This result
shows that the sum over the Jacobi action involving a square root of ve-
locities can be re-expressed in terms of the standard path integral; if the
latter can be evaluated for a given system, then the sum over the Jacobi
action can be defined by this procedure.
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The result also has an obvious interpretation. The 〈x2|x1〉 on the right
hand side gives the amplitude for a particle to propagate from xxx1 to xxx2
in time t. Its Fourier transform with respect to t can be thought of as the
amplitude for the particle to propagate from xxx1 to xxx2 with energy E, which
is precisely what we expect to obtain from the sum over the Jacobi action.
The idea actually works even for particles in a potential if we evaluate
the path integral on the right hand side by some other means like, e.g., by
solving the relevant Schrödinger equation.

With future applications in mind, we will display the explicit form of
this result for the case of a free particle with V = 0. Denoting the length
of the path connecting xα1 and xα2 by �(xxx2,xxx1) we have:

xxx2

∑
xxx1

exp i
√

2mE �(xxx2,xxx1) =C
∫ ∞

0
dt eiEt

t,xxx2

∑
0,xxx1

exp
im
2

∫ t

0
dτ
(

gαβ ẋα ẋβ
)
.

(17.15)
This result shows that the sum over paths with a Jacobi action, which has
a square root, can be re-expressed in terms of the standard path integral
involving only quadratic terms in the velocities. We, of course, know the
result of the path integral in the right hand side (for gαβ = δαβ in Cartesian
coordinates) and thus we can evaluate the sum on the left hand side.

Box 17.1: Propagation amplitude from Stationary states

For a particle in a general, non-quadratic potential V (x), nobody
knows how to sum over paths and get 〈x2|x1〉. So the path integral
is nice to look at but practically useless — you need to get back to
the Schrödinger equation! Come back,

Schrödinger; all
is forgiven!

But one can certainly express 〈x2|x1〉 in
terms of solutions to the Schrödinger equation, when the potential is
time-independent, as follows:

When the potential is independent of time, energy eigenstates sat-
isfy the eigenvalue equation Hφn(xxx) = Enφn(xxx). Using these eigen-
functions we can expand the initial wavefunction ψ(0,xxx) in terms of
the energy eigenfunctions as

ψ(0,xxx) =∑
n

cnφn(xxx); cn =
∫

dyyyψ(0,yyy)φ ∗
n (yyy) , (17.16)

where the expression for cn follows from the orthonormality of the
energy eigenfunctions and the spatial integrations are over the D-
dimensional space. Since the energy eigenfunction evolves in time
with a phase factor exp(−iEnt/h̄), it follows that the wavefunction at
time t is given by:

ψ(t,xxx) =∑
n

cnφn(xxx)e−iEnt/h̄ , (17.17)



182 17 If Quantum Mechanics is the Paraxial Optics, then ...

Here comes the
real surprise

which, in principle, solves the problem. We now express the cns
in Eq. (17.17) in terms of ψ(0,xxx) using the second relation in
Eq. (17.16). This gives:

ψ(t,xxx) =
∫

dyyyψ(0,yyy)∑
n
φn(xxx)φ ∗

n (yyy)e
−iEnt/h̄

≡
∫

dyyyK(t,xxx;0,yyy)ψ(0,yyy) , (17.18)

which allows us to read off the propagator as:Propagator
from energy
eigenfunctions 〈x2|x1〉 ≡ K(t,xxx;0,yyy) =∑

n
φ ∗

n (yyy)φn(xxx)e−iEnt/h̄ . (17.19)

Equation (17.18) nicely separates the dynamics — encoded in
K(t,xxx;0,yyy) — from the initial condition encoded in ψ(0,yyy).

A strange fact Curiously enough, such a separation has no direct analog in the case
of classical mechanics.

Using the definition in Eq. (17.19) and the orthonormality of
eigenfunctions, you can prove that 〈x2|x1〉 does satisfy the two con-
straints in Eq. (17.2) and Eq. (17.4). Since the φns are energy eigen-
functions, it is also straightforward to verify that the propagator sat-
isfies the Schrödinger equation(

ih̄
∂
∂ t

−H
)

K(t,xxx;0,yyy) = 0 , (17.20)

with the special initial condition

lim
t→0

K(t,xxx;0,yyy) = δD(xxx− yyy) . (17.21)

This condition can also be obtained easily from Eq. (17.18) by taking
the limit of t → 0.

We said earlier that the exact evaluation of the sum over paths is
possible only when the action is quadratic. But, there are situations in
which one can approximate the sum by the result in Eq. (17.9) which
only requires the classical solution to the problem. Then, by using
Eq. (17.19), we can get some information about energy spectrum —
which is (approximate) quantum mechanics at the classical price! We
will say more about this in Chapter 18.

The most remarkable feature about the propagator in Eq. (17.11) is that
you have already seen this expression in Chapter 16 in connection with the
propagation of electromagnetic waves along the z-direction! There we had
the expression (see Eq. (16.8)) for a propagator which is reproduced here
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for your convenience:

G
(
z− z′;xxx⊥− xxx′⊥

)
=
( ω

2πic

) 1
|z− z′| exp

[
iω
2c

(
xxx⊥− xxx′⊥

)2

(z− z′)

]
. (17.22)

Comparing Eq. (17.22) with Eq. (17.8), we see the following correspon-
dence. The (z− z′)/c, which is the time of light travel along the z− axis
— along which the wave is propagating — is analogous to the time t
in quantum mechanics. The two transverse spatial directions in the case
of electromagnetic wave propagation are analogous to the spatial coordi-
nates in quantum mechanics in 2-dimensions, so that we can set D = 2
in Eq. (17.8). The frequency should get mapped to the relation h̄ω = mc2

which is essentially the frequency associated with the Compton wave-
length of the particle. This will make the propagators identical! Obviously,
this deserves further probing especially since the correspondence brings
in a c factor when we thought we were doing non-relativistic quantum
mechanics.

In the case of the propagation of the electromagnetic wave amplitude,
we were propagating it along the positive z−direction with xxx and yyy acting
as two transverse directions. In the case of quantum mechanics, we are
propagating the amplitude for a particle along the positive t−direction
with all the spatial coordinates acting as “transverse directions”. In the
language of paraxial optics, the special axis is along the time direction in
quantum mechanics.

But we know that paraxial optics is just an approximation to a more ex-
act propagation in terms of the wave equation. In the wave equation for the
electromagnetic wave, the three coordinates (x,y,z) appear quite symmet-
rically and to obtain the paraxial limit, we choose one axis (the z−axis)
as special and propagate the amplitude along the positive direction. This
is why the propagator in Eq. (17.22) has the x,y coordinates appearing
differently compared to the z−axis. Doing a bit of reverse engineering we
can ask the question: If the quantum mechanical propagator is some kind
of paraxial optics limit of a more exact theory, what is the exact theory?

An obvious way to explore the situation is to restore the symmetry
between z and x,y in optics and — similarly — restore the symmetry
between t and xxx in quantum mechanics. We can do this if we recall the
interpretation of the phase as due to the path difference in the case of an
electromagnetic wave. The relevant equation (see Eq. (16.10)) is again
reproduced below:

kΔs =
ω
c

[√(
xxx⊥− xxx′⊥

)2
+(z− z′)2 − (z− z′

)]

∼= ω
c

[
1
2

(
xxx⊥− xxx′⊥

)2

(z− z′)

]
. (17.23)
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We use the fact that a path difference Δs between two points in space will
introduce a phase difference of kΔs in a propagating wave. The parax-
ial optics results when the transverse displacements are small compared
to the longitudinal distance. Taking a cue from this, let us construct the
quantity

�(t,xxx;0,yyy)− ct
λ

≡ mc
h̄

{[
c2t2 − (xxx− yyy)2]1/2 − ct

}
, (17.24)

where �(t,xxx;0,yyy) is the special relativistic spacetime interval between the
two events. We are subtracting from it the “paraxial distance” ct along the
time direction and dividing by λ ≡ (h̄/mc) which is the Compton wave-
length of the particle. This is exactly the construction suggested by the
correspondence between Eq. (17.22) and Eq. (17.8), discussed previously,
except for using the special relativistic line interval, with a minus sign be-
tween space and time. The paraxial limit now arises as the non-relativistic
limit of this expression in Eq. (17.24) when c → ∞; this is given by:

�− ct
λ

∼=−m
2
(xxx− yyy)2

h̄t
, (17.25)

which is precisely the phase of the propagator in Eq. (17.8) except for a
sign. So, the propagator can be thought of as the non-relativistic limit of
the function:

K(t,xxx;0,yyy) = N(t)ei(mc2/h̄)t exp
(
−i
[
�(t,xxx;0,yyy)

λ

])
. (17.26)

So, the phase of the propagator is just the proper distance between the
two events, in units of the Compton wavelength, just as the phase in the
case of the electromagnetic wave propagator is the path length in units
of the wavelength. (The extra factor (mc2/h̄)t does not contribute to the
propagation integral in Eq. (17.18) and goes for a ride in this context;
however, it has some curious implications which we discussed in Chapter
15.). We can think of the path difference between a straight path along the
time direction (with xxx = yyy) and another specified path as contributing a
phase �/λ to the propagator. This geometric interpretation is lost for the
phase in the paraxial limit (in the case of electromagnetic theory) and in
the non-relativistic limit (in the case of a particle).

This extension suggests that the phase in the relativistic case can be
related to the corresponding action. The action for a free particle in special
relativity is given by

AR(t,xxx;0,yyy) =−mc2
∫ t

0
dt
(

1− v2

c2

)1/2

. (17.27)
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Once again, evaluating this for a relativistic classical trajectory, we get:

Ac
R(t,xxx;0,yyy) =−mc2t

[
1− (xxx− yyy)2

c2t2

]1/2

=−mc
[
c2t2 − (xxx− yyy)2]1/2

,

(17.28)

which is essentially the interval between the two events in the spacetime.
This suggests expressing the propagator for the relativistic free particle in
the form:

K(t,xxx;0,yyy) = N(t)exp
(

iAc
R

h̄
+

imc2t
h̄

)
. (17.29)

This result is true but only in an approximate sense, to the leading order;
the actual propagator for a particle in relativistic quantum theory turns out
to be more complicated. This is because the action in Eq. (17.27) for the
relativistic particle is not quadratic and our previous result in Eq. (17.9)
does not hold. But, to the leading order, all of it hangs together very nicely.
The phase of the propagator is indeed the value of the classical action di-
vided by h̄ and it is also given by the ratio of the spacetime interval be-
tween the events and the Compton wavelength. It is the second interpreta-
tion which makes the contact with optics so clear and is lacking when we
do non-relativistic quantum mechanics.

There is actually a valid mathematical reason for this to happen, which
can be described qualitatively as follows: The Schrödinger equation de-
scribing the non-relativistic particle involves the first derivative with re-
spect to time but the second derivative with respect to spatial coordinates.
This works in non-relativistic mechanics in which time is special and ab-
solute. In contrast, in relativistic theories, we treat time and space at a
more symmetric footing and use a wave equation in which the second
derivative with respect to time also appears. The solutions to such an equa-
tion will allow propagation of amplitudes both forward and backward in
the a time coordinate just as it allows propagation both forwards and back-
wards in spatial coordinates. When one takes the non-relativistic limit of
the field theory, we select out the modes which only propagate forward in
time.

This is exactly in analogy with paraxial optics we studied in Chapter
16. The basic equation for an electromagnetic wave will allow propaga-
tion in both the positive z−direction as well as the negative z−direction.
But, when we consider a specific context of paraxial optics (for example,
a beam of light hitting a couple of slits in a screen and forming an interfer-
ence pattern, or light propagating through a lens and getting focused), we
select out the modes which are propagating in the positive z−direction.
It is therefore no wonder that the propagator in non-relativistic quantum
mechanics is mathematically identical to that in paraxial optics!
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Let us do it in full
glory, for once

Finally, just to whet your curiosity, let me describe the structure of the
exact relativistic propagator for a free particle. We will use units with
c = 1 in what follows.

The standard action for a relativistic particle is given by

A = −m
∫ t2

t1
dt
√

1− vvv2 =−m
∫ x2

x1

√
−ηabdxadxb

= −m
∫ λ2

λ1

dλ
√
−ηabẋaẋb , (17.30)

where xa(λ ) gives a parameterized curve connecting the events x1 and
x2 in the spacetime with the parameter λ . In the second and third forms
of the expression, the integral is evaluated for any curve connecting
the two events with limits of integration depending on the nature of
the parametrization. (For example, we have chosen x(λ = λ1) = x1,
x(λ = λ2) = x2, but the numerical value of the integral is independent
of the parametrization and depends only on the curve. If we choose to
use λ = t as the parameter, then we reproduce the first expression from
the last.) It is obvious that this action has the same structure as the Jacobi
action for a free particle discussed in the last section.

To obtain the propagation amplitude 〈x2|x1〉 we need to do the path
integral using the above action,

〈x2|x1〉 =
t,xxx2

∑
0,xxx1

exp
[
−im

∫ t2

t1
dt
√

1− vvv2

]

=
t,xxx2

∑
0,xxx1

exp
[
−im

∫ τ

0
dλ
√

ṫ2 − ẋxx2
]
, (17.31)

which can be accomplished using the results obtained earlier [68]. We
first take the complex conjugate of Eq. (17.15) (in order to get the overall
minus sign in the action in Eq. (17.30)) and generalize the result from
space to spacetime, leading to:

xxx2

∑
xxx1

exp−i
√

2mE l(xxx2,xxx1)=C
∫ ∞

0
dτ e−iEτ

t,xxx2

∑
0,xxx1

exp− im
2

∫ τ

0
dλ

(
−gabẋaẋb

)
.

(17.32)

In order to get −iml(xxx2,xxx1) on the left hand side we take E = m/2; i.e.,
we use the above formula with the replacements

E =
m
2

; gab = dia(−1,+1,+1,+1);

l =
∫ τ

0

√
−gabẋaẋb dλ =

∫ t2

t1
dt
√

1− vvv2 . (17.33)
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The path integral over the quadratic action can be immediately borrowed
from Eq. (17.11) with D = 4, taking due care of the fact that in the
quadratic action the ṫ2 enters with negative sign while ẋxx2 enters with the
usual positive sign. This gives an extra factor i to N and the answer is:

〈x2,τ|x1,0〉= θ(τ)i
( m

2πiτ

)2
exp

[
i
2

mx2

τ

]
. (17.34)

The θ(τ) is introduced for the same reason as θ(t) in Eq. (17.11) but will
turn out to be irrelevant since we will integrate over it. Therefore the path
integral we need to compute is given by

〈x2|x1〉 =
t,xxx2

∑
0,xxx1

exp−im
∫ t2

t1
dt
√

1− vvv2 (17.35)

= C
∫ ∞

0
dτ e

−imτ
2 i

( m
2πiτ

)2
exp

(
im
2τ

x2
)

= (2Cm)(−i)
m

16π2

∫ ∞

0

ds
s2 e−ims exp

(
im
4s

x2
)

; τ = 2s ,

where C is a proportionality constant. We have thus given meaning to the
sum over paths for the relativistic particle thereby obtaining 〈x2|x1〉. The
integral expression also gives a nice interpretation for 〈x2|x1〉 which we
will first describe before discussing this result.

The trajectory of a classical relativistic particle in spacetime is given
by the four functions xi(τ) where τ could be taken as the proper time
shown by a clock which moves with the particle. (To be precise, this is one
physically meaningful choice for timelike curves; for spacelike and null
curves, the corresponding choices are proper length and what is known as
the affine parameter.). Such a description treats space and time on an equal
footing with xxx(τ) and t(τ) being dependent variables and τ being the in-
dependent variable having an observer independent, absolute, meaning.
This is a natural generalization of xxx(t) in non-relativistic mechanics with
(x,y,z) being dependent variables and t being the independent variable
having an observer independent, absolute, status. Let us now consider an
action for the relativistic particle in the form

A[x(τ)] =
1
4

m
∫ s

0
dτ ẋaẋa , (17.36)

where ẋa ≡ (dxa/dτ), etc. This action, of course, gives the correct equa-
tions of motion d2xa/dτ2 = 0, but the overall constant in front of the
integral — which is arbitrary as far as the classical equations of motion
go — is chosen with some foresight.

Evaluating a path integral with this action will now lead to an amplitude
of the form 〈x2,s|x1,0〉 which describes a particle propagating from an
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event x1 to an event x2 when the proper time lapse is given by s. But we
are interested in the amplitude 〈x2|x1〉 and don’t care what is the amount
of proper time that has elapsed. Therefore we need to also sum over (i.e.,
integrate) all the proper time lapses with some suitable measure. Since
the rest energy of the particle mc2 = m is conjugate to the proper time
(which measures the lapse of time in the instantaneous co-moving Lorentz
frame of the particle) it seems reasonable to choose this measure to be
proportional to a phase factor e−ims. Thus we have the relation

〈x2|x1〉=Cm

∫ ∞

−∞
dse−ims〈x2,s|x1,0〉=Cm

∫ ∞

−∞
dse−ims ∑

x(τ)
eiA[x(τ)] ,

(17.37)
where Cm is a normalization constant possibly dependent on m, which we
will fix later. (The amplitude 〈x2|x1〉 in Eq. (17.11) has the dimensions
of (length)−D, as it should. So, the 〈x2|x1〉 in Eq. (17.37) will have the di-
mension (length)−3 after integrating over s, if Cm is dimensionless. People
like it to have the dimensions of (length)−2 which is achieved by taking
Cm ∝ (1/m).) We have kept the integration limits on s to be the entire
real line but it will get limited to (0,∞) because of the θ(s) in the path
integral. In the second equality, we have used the standard path integral
prescription.

Exactly as before, the sum over paths is now to be evaluated limiting
ourselves to paths xi(τ) which only go forward in the proper time τ just
as the paths in Eq. (17.10) were limited to those which go forward in
the Newtonian absolute time t. However, we now have to allow paths
like the one shown in Fig. 17.2 which go back and forth in time t just as
we allowed in Eq. (17.10) the paths which went back and forth in the y
coordinate, say. The time coordinate t(τ) of a path now has the same status
as the spatial coordinate, say y(τ), in the non-relativistic description. The
special role played by the absolute Newtonian time t is taken over by the
proper time τ in this description. This has important implications which
we will come back to later on.

Since the action is now quadratic, the calculation is straightforward and
we get:

〈x2|x1〉 = −(2Cm)i
( m

16π2

)∫ ∞

0

ds
s2 exp

(
−ims+

i
4

mx2

s

)

= − i
16π2

∫ ∞

0

dμ
μ2 exp

(
−i(m2 − iε)μ+

i
4

x2

μ

)
, (17.38)

where we have made three modifications to arrive at the second line. First,
we have rescaled the variable s to μ by s ≡ mμ . Second, we have made
the choice C = 1/2m which, as we shall, see matches with conventional
results later on and — more importantly — allows us to take the m → 0
limit, if we want to study zero mass particles. Finally, we have replaced
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m2 by (m2 − iε), where ε is an infinitesimal positive constant, in order
to make the integral convergent in the upper limit. This is, of course, the
same result obtained earlier. The integral can be expressed in terms of the
MacDonald function:

〈x2|x1〉= m

4π2i
√

x2
K1(im

√
−x2) , (17.39)

where, of course, x2 = −t2 + |xxx|2 and hence the square-root of −x2 is
imaginary for space-like intervals. However, the Fourier transform of
〈x2|x1〉 is a more tractable object:

∫
〈x2|x1〉eip·xd4x = − i

16π2

∫ ∞

0

dμ
μ2 e−i(m2−iε)μ

∫
d4xexp

(
i
4

x2

μ
+ ip · x

)

= − i
(p2 +m2 − iε)

, (17.40)

and is used extensively in field theory.
Let us now consider the nature of paths we summed over to get this re-

sult like the one in Fig.17.2. This has the crucial implication that, at some
intermediate coordinate time y0, we have to consider a situation with 3
particles at 3 different locations in space! Besides, the particle is travel-
ing backwards in coordinate time for part of the path! This is disturb-
ing to someone who is accustomed to sensible physical evolution which
proceeds monotonously forward in time from t1 < t2 < t3... and hence it
would be nice if we can reinterpret 〈x2|x1〉 in such a nice, causal manner.
Let us see what is needed for this.

If we say that a single particle has three degrees of freedom (in
D= 3), then we start and end (at x1 and x2) with three degrees of free-
dom in Fig. 17.2. But if a path cuts a spatial slice at an intermediate time
y0 at k points (the figure is drawn for k = 3), then we need to be able to
describe 3k degrees of freedom at this intermediate time. Since k can be
arbitrarily large, we conclude that if we want a description in terms of
causal evolution going from t1 to t2, then we need to use a mathemati-
cal description involving an infinite number of degrees of freedom. In the
properly constructed field theory, the parts of the particle trajectory which
are going back in coordinate time are interpreted as the trajectory of an
antiparticle going forward in time.



See Eq. (17.19)

Can the sum over
paths tell us some-
thing really useful?

Make time
imaginary!

18Make it Complex to Simplify

In Chapter 17, we discussed how one can study the time evolution of a
quantum wavefunction using a path integral propagator expressed as a
sum over paths. We also showed that, when the Hamiltonian H is time
independent, the kernel can be expressed in terms of the energy eigen-
functions through the formula:

K(T,q2;0,q1) =∑
n
ψn(q2)ψ∗

n (q1)exp(−iEnT ) . (18.1)

So, if the energy eigenfunctions and eigenvalues are given, one can de-
termine the kernel. (We will use the terms propagator and kernel inter-
changeably.)

There are, however, occasions in which one may be able to determine
the kernel directly by evaluating or approximating the path integral. The
question arises as to whether one can determine the energy eigenfunctions
and eigenvalues by “inverting” the above relation. In particular, one is
often interested in the ground state eigenfunction and the ground state
energy of the system. Can one find this if the kernel is known?

It can be done using an interesting trick [69] which very often turns
out to be more than just a trick, having a rather perplexing domain of
validity. To achieve this, let us do the unimaginable and assume that time
is actually a complex quantity. We then analytically continue from the real
values of time t to purely imaginary values τ = it. In special relativity such
an analytic continuation will change the line interval from Lorentzian to
Euclidean form through

ds2 =−dt2 +dxxx2 → dτ2 +dxxx2 . (18.2)

Because of this, one often calls quantities evaluated with analytic contin-
uation to imaginary values of time as “Euclidean” quantities and denotes
them with a subscript E (which should not be confused with energy!). If
we now do the analytic continuation of the kernel in Eq. (18.1), we get the
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result

KE(TE ,q2;0,q1) =∑
n
ψn(q2)ψ∗

n (q1)exp(−EnTE) . (18.3)

Let us consider the form of this expression in the limit of TE → ∞. If the
energy eigenvalues are ordered as E0 <E1 < ..., then, in this limit, only the
term with the ground state energy will make the dominant contribution,
and remembering that ground state wavefunction is real for the systems
we are interested in, we get,

KE(TE ,q2;0,q1)≈ ψ0(q2)ψ0(q1)exp(−E0TE); (when TE → ∞) .
(18.4)

We now put q2 = q1 = 0, take the logarithm of both sides and divide by
TE ; then in the limit of TE → ∞, we get a formula for the ground state
energy:

−E0 = lim
TE→∞

[
1

TE
lnKE(TE ,0;0,0)

]
. (18.5)

So, if we can determine the kernel by some method, we will know the
ground state energy of the system. Once the ground state energy is known,
we can plug it back into the asymptotic expansion in Eq. (18.4) and deter-
mine the ground state wavefunction.

Very often, we would have arranged matters such that the ground state
energy of the system is actually zero. When E0 = 0, there is a nice way of
determining the wavefunction from the kernel by noting that:

lim
T→∞

K(T,0;0,q)≈ ψ0(0)ψ0(q) ∝ ψ0(q) . (18.6)

So, the infinite time limit of the kernel — once we have introduced the
imaginary time — allows determination of both the ground state wave-
function as well as the ground state energy. The proportionality constant
ψ0 can be fixed by normalizing the wavefunction.

Of course, these ideas are useful only if we can compute the kernel
without knowing the wavefunctions in the first place. This is possible —
as we discussed in Chapter 17 — whenever the action is quadratic in the
dynamical variable. In that case, the kernel in real time can be expressed
in the form

K(t2,q2; t1,q1) = N(t1, t2)exp iAc(t2,q2; t1,q1) , (18.7)

where Ac is the action evaluated for a classical trajectory and N(t2, t1) is
a normalization factor and we are using units with h̄ = 1. The same ideas
will work even when we can approximate the kernel by the above expres-
sion. We saw in Chapter 17 that in the semiclassical limit, the wavefunc-
tions can be expressed in terms of the classical action. It follows that the
kernel can be written in the above form in the same semiclassical limit. If
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we now analytically continue this expression to imaginary values of time,
then, using the result in Eq. (18.6) we get a simple formula for the ground
state wavefunction in terms of the Euclidean action (that is, the action
for a classical trajectory obtained after analytic continuation to imaginary
values of time):

ψ0(q) ∝ exp [−AE (TE = ∞,0;TE = 0,q)] ∝ exp [−AE (∞,0;0,q)] .
(18.8)

As an application of these results, consider a simple harmonic oscilla-
tor with the Lagrangian L = (1/2)(q̇2 −ω2q2). The classical action with
the boundary conditions q(0) = qi and q(T ) = q f is given by

Ac =
ω

2sinωT

[
(q2

i +q2
f )cosωT −2qiq f

]
. (18.9)

Analytic continuation will give the Euclidean action corresponding to iAc
to be −AE where

AE =
ω

2sinhωT

[
(q2

i +q2
f )coshωT −2qiq f

]
. (18.10)

Using this in Eq. (18.8), we find that the ground state wavefunction has
the form

ψ0(q) ∝ exp−[(ω/2)q2] , (18.11)

which, of course, is the standard result. You can also obtain the ground
state energy (1/2)h̄ω by using Eq. (18.5). What is amazing, when you
think about it, is that the Euclidean kernel in the limit of an infinite time
interval has information about the ground state of quantum system. This
is the first example in which imaginary time leads to a real result!

The analytic continuation to imaginary values of time also has close
mathematical connections with the description of systems in a thermal
bath. To see this, consider the mean value of some observable O(q) of
a quantum mechanical system. If the system is in an energy eigenstate
described by the wavefunction ψn(q), then the expectation value of O(q)
can be obtained by integrating O(q)|ψn(q)|2 over q. If the system is in
a thermal bath at temperature β−1, described by a canonical ensemble,
then the mean value has to be computed by averaging over all the energy
eigenstates as well with a weightage exp(−βEn). In this case, the mean
value can be expressed as

〈O〉= 1
Z ∑n

∫
dqψn(q)O(q)ψ∗

n (q)e−βEn ≡ 1
Z

∫
dqρ(q,q)O(q) ,

(18.12)
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where Z is the partition function and we have defined a density matrix
ρ(q,q′) by

ρ(q,q′)≡∑
n
ψn(q)ψ∗

n (q
′)e−βEn , (18.13)

in terms of which we can rewrite Eq. (18.12) as

〈O〉= Tr(ρO)

Tr(ρ)
, (18.14)

where the trace operation involves setting q = q′ and integrating over q.
This standard result shows how ρ(q,q′) contains information about

both thermal and quantum mechanical averaging. In fact, the expression
for the density matrix in Eq. (18.13) is the coordinate basis representation
of the matrix corresponding to the operator ρ = exp(−βH). That is,

ρ(q,q′) = 〈q|e−βH |q′〉 . (18.15)

But what is interesting is that we can now relate the density matrix of a
system in finite temperature — something very real and physical — to
the path integral kernel in imaginary time! This is obvious from compar-
ing Eq. (18.13) with Eq. (18.1). We find that the density matrix can be
immediately obtained from the Euclidean kernel by:

ρ(q,q′) = KE(β ,q;0,q′) . (18.16)

The imaginary time is now being identified with the inverse temperature.
Very crudely, this identification arises from the fact that thermodynamics
in the canonical ensemble uses e−βH while the standard time evolution in
quantum mechanics uses e−itH . But beyond that, it is difficult to under-
stand in purely physical terms why imaginary time and real temperature
should have anything to do with each other.

In obtaining the expectation values of operators which depend only
on q — like the ones used in Eq. (18.12) — we only need to know the
diagonal elements ρ(q,q) = KE(β ,q;0,q). The kernel in the right hand
side can be thought of as the one corresponding to a periodic motion in
which a particle starts and ends at q in a time interval β . In other words,
periodicity in imaginary time is now linked to finite temperature.

Believe it or not, most of the results in black hole thermodynamics
can be obtained from this single fact by noting that the spacetimes rep-
resenting a black hole, for example, have the appropriate periodicity in
imaginary time. Considering the elegance of this result, let us pause for
a moment and see how it comes about. Consider a curved spacetime in
general relativity which has a line interval

ds2 =− f (r)dt2 +
dr2

f (r)
+dL2

⊥ , (18.17)
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Step 1: Metric near
a horizon

Step 2: Go Eu-
clidean; find the
period of imaginary
time

There you are!

where dL2
⊥ represents the metric in the two transverse directions. For ex-

ample, we saw in Chapter 11 that the Schwarzschild metric representing a
black hole has this form with f (r)=1−(rg/r) where rg=(2GM/c2)=2M
(in units with G= c= 1) and dL2

⊥ represents the standard metric on a two-
sphere. The only property we will actually need is that f (r) has a simple
zero at some r = a with f ′(a) ≡ 2κ being some constant. In the case of
the black hole metric, κ = (1/2rg). When we consider the metric near the
horizon r ≈ a, we can expand f (r) in a Taylor series and reduce it to the
form

ds2 =−2κldt2 +
dl2

2κl
+dL2

⊥ , (18.18)

where l ≡ (r − a) is the distance from the horizon. If we now make a
coordinate transformation from l to another spatial coordinate x such that
(κx)2 = 2κl, the metric becomes

ds2 =−κ2x2dt2 +dx2 +dL2
⊥ . (18.19)

This represents the metric near the horizon of a black hole.

So far we have not done anything non-trivial. Now we shall analytically
continue to imaginary values of time with it = τ and denote κτ = θ . Then
the corresponding analytically continued metric becomes

ds2 = x2dθ 2 +dx2 +dL2
⊥ . (18.20)

But (dx2 + x2dθ 2) is just the metric on a two dimensional plane in polar
coordinates and if it has to be well behaved at x = 0, the coordinate θ
must be periodic with period 2π . Since θ = κτ , it follows that the imag-
inary time τ must be periodic with period 2π/κ as far as any physical
phenomenon is concerned. But we saw earlier that such a periodicity of
the imaginary time is mathematically identical to working with finite tem-
perature, with the temperature

β−1 =
κ
2π

=
1

4πrg
=

h̄c3

8πGM
, (18.21)

where the first equality is valid for a general class of metrics (with κ
suitably defined by Taylor expansion of f (r)) while the last two results
are for the Schwarzschild metric, and in the final expression, we have
reverted back to normal units. This is precisely the Hawking temperature
of a black hole of mass M which we obtained by a different method in
Chapter 12. Here we could do that just by looking at the form of the metric
near the horizon and using the relation between periodicity in imaginary
time and temperature.

The imaginary time and Euclidean action also play an interesting role
in the case of tunneling. To see this, let us start with the expression for the
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Another application

What you can’t do
in real time, you can
do in imaginary time

Schwinger effect

classical action written in the Jacobi-Mapertius form (see Eq. (2.37):

S =
∫

pdq =
∫ √

2m(E −V )dq . (18.22)

As long as E > V , this will lead to a real value for S. Tunneling occurs,
however, when E < V . To simplify matters a little bit, let us consider the
case of a particle with E = 0 (which can always be achieved by adding a
constant to the Hamiltonian) moving in a potential V > 0. In that case the
action becomes pure imaginary and is given by

S = i
∫ √

2mV dq , (18.23)

and the corresponding branch of the semiclassical wavefunction will be
exponentially damped:

ψ ∝ exp iS = exp−
∫ √

2mV dq . (18.24)

This represents the fact that you cannot have a classical trajectory with
E = 0 in a region in which V > 0.

It is however possible to have such a trajectory if we analytically con-
tinue to imaginary values of time. In real time, the conservation of energy
for a particle with E = 0 gives (1/2)m(dq/dt)2 = −V (q) which cannot
have real solutions when V > 0. But when we set t = −iτ this equation
becomes (1/2)m(dq/dτ)2 = V (q) which, of course, has perfectly valid
solutions when V > 0. So the tunneling through a potential barrier can be
interpreted as a particle moving off to imaginary values of time as far as
the mathematics goes. The Euclidean action will now be

SE =
∫ √

2mV dq . (18.25)

All that we need to do to obtain the tunneling amplitude is to replace iS by
−SE in the argument of the relevant exponential so that the wavefunction
in Eq. (18.24) becomes:

ψ ∝ exp iS = exp−
∫ √

2mV dq = exp−SE . (18.26)

So we find that the tunneling amplitude across the potential can also be re-
lated to analytic continuation in the imaginary time and and the Euclidean
action.

We will now use these ideas to obtain a really non-trivial phenomenon
in quantum electrodynamics, called the Schwinger effect, named after Ju-
lian Schwinger who was one of the creators of quantum electrodynamics
and received a Nobel Prize for the same. In simplest terms, this effect
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How can they pop
out of the vacuum?

can be stated as follows. Consider a region of space in which there ex-
ists a constant, uniform electric field. One way to do this is to set-up two
large, parallel, conducting plates separated by some distance L and con-
nect them to the opposite poles of a battery. This charges the plates and
produces a constant electric field between them. Schwinger showed that,
in such a configuration, electrons and positrons will spontaneously appear
in the region between the plates through a process which is called pair
production from the vacuum.

The first question one would ask is how particles can appear out of
nowhere. This is natural since we haven’t seen tennis balls or chairs appear
out of the vacuum spontaneously. In quantum field theory, what we call
vacuum is actually bristling with quantum fluctuations of the fields which
can be interpreted in terms of virtual particle-antiparticle pairs. Under nor-
mal circumstances, such a virtual electron-positron pair will be described
by the situation in the left frame of Fig. 18.1. We think of an electron
and positron being created at the event A and then getting annihilated at
the event B. In the absence of any external fields, there is no force acting
on these virtual pairs and they continuously appear and disappear quite
randomly in the spacetime.

time

space

E

e+e−

A

B

A

)b()a(

Fig. 18.1: In the vacuum, there exist virtual electron-positron pairs which are constantly
created and annihilated as shown in the left frame (a). An electron-positron pair is
created at A and annihilated at B with the positron being interpreted as an electron
going backward in time. The right frame (b) shows how, in the presence of an electric
field, this virtual process can lead to creation of real electrons and positrons.
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One way to think
about it

Imaginary time
makes virtual, real

Back to action

Consider now what happens if there is an electric field present in this
region of space. The electric field will pull the electron in one direction
and push the positron in the opposite direction since the electrons and
positrons carry opposite charges. In the process, the electric field will do
work on the virtual particle-antiparticle pair and hence will supply en-
ergy to them. If the field is strong enough, it can supply an energy greater
than the rest energy of the two charged particles which is just 2×mc2

where m is the mass of the particle. This allows the virtual particles to be-
come real. That is how the constant electric field between two conducting
parallel plates produces particles out of the vacuum. It essentially does
work on the virtual electron-positron pairs which are present in the space-
time and converts them into real particles as shown in the right frame of
Fig. 18.1(b).

One way to model this is to assume that the particle tunnels from the
trajectory on the left to the one on the right through the semicircular path
in the lower half. The trajectories on the left and right are real trajecto-
ries for the charged particle but the semicircle is a ‘forbidden’ quantum
process. We will now see how the imaginary time makes this possible.

To do this, we begin with the trajectory in real time which will cor-
respond to relativistic motion with uniform acceleration g = qE/m. We
have worked this out in Chapter 12 and the result is given — with suitable
choice of initial conditions — by:

x = (1/g)cosh(gτ); t = (1/g)sinh(gτ); x2 − t2 = 1/g2 .
(18.27)

The trajectory is a (pair of) hyperbola in the t − x plane shown in
Fig. 18.1(b). If we now analytically continue to imaginary values of τ
and t, the trajectory becomes a circle x2 + t2

E = 1/g2 of radius (1/g) and
the parametric equations become

x = (1/g)cosθ ; t = (1/g)sinθ ; θ = gτE . (18.28)

By going from θ = π to θ = 0, say, we can get this to be a semicircle
connecting the two hyperbolas.

To obtain the amplitude for this process we have to evaluate the value
of the Euclidean action for the semicircular track. The action for a particle
of charge q in a constant electric field E represented by a scalar potential
φ =−Ex is given by

A =−m
∫

dτ+qE
∫

xdt , (18.29)

where τ is the proper time of the particle. So, on analytic continuation we
get

iA =−im
∫

dτ+ iqE
∫

xdt →−m
∫

dτE +qE
∫

xdtE ≡−AE . (18.30)
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Final result

You can’t get it in
perturbation theory!

Complex space?

The Euclidean action AE in Eq. (18.30) can be easily transformed to an
integral over θ and noting that the integral over xdtE is essentially the area
enclosed by the curve, which is a semicircle of radius (1/g), we get

−AE =−m
g

∫ 2π

π
dθ +

m
2g

∫ 2π

π
dθ =−mπ

2g
. (18.31)

The limits of the integration are so chosen that the path in the imaginary
time connects x =−(1/g) with x = (1/g) thereby allowing a virtual semi-
circular loop to be formed as shown in Fig. 18.1(b). Hence the final result
for the Euclidean action for this classically forbidden process is

AE =
πm
2g

=
πm2

2qE
. (18.32)

With the usual rule that a process with exp iA gets replaced by exp(−AE)
when it is classically forbidden, we find the amplitude for this pro-
cess to take place to be A ∝ exp(−AE). The corresponding probability
P = |A |2 is given by

P ≈ exp−(πm2/qE) . (18.33)

This is the leading term for the probability which Schwinger obtained for
the pair creation process. (In fact, one can even obtain the sub-leading
terms by transferring paths which wind around several times in the circle
but we will not go into this; if you are interested, take a look at ref. [70]).
Once again, the moral is clear. What is forbidden in real time is allowed
in imaginary time!

The expression for P is non-analytic in q which measures the strength
of coupling between the charge and the electromagnetic field. Usually, in
quantum field theory one studies processes (like e.g., scattering) by a per-
turbative expansion in q. It is obvious that you will not be able to calculate
P by such a procedure, irrespective of how many orders in perturbation
you calculate! The approach based on Euclidean action is capable of giv-
ing us non-perturbative results.

So far we were making things complex by analytically continuing from
real to imaginary time. There are other physical situations in which this
idea does not work but you can get around by actually using a complex
coordinate (rather than time). One beautiful application of this technique
is in understanding a phenomenon called over-the-barrier-reflection in a
potential. Let me describe this situation which, somehow, does not find
adequate discussion in textbooks.

Consider a potential of the form in Fig. 18.2 in which a particle is
incident from the left. If its energy is like E0, which is below the peak
of the potential, it will tunnel to the right and we have already seen that
one can obtain the transmission coefficient T by analytically continuing
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x2x1
x

E0

E

V(x)

Fig. 18.2: A generic potential indicating the energy levels at which (i) tunneling and (ii)
over-the-barrier-reflection can occur. (i) A particle incident from the left with energy E0
will tunnel through the potential with an exponentially small transmission coefficient;
its reflection coefficient will be nearly unity. (ii) On the other hand, a particle incident
from the left with energy E will be reflected with an exponentially small amplitude; its
transmission coefficient will be nearly unity.

Over-the-barrier-
reflection, described

to complex time. This T is exponentially small and is non-analytic in h̄;
it goes to the credit of imaginary time method that we can pick it up.
Of course, the standard WKB method — which involves the integral of
p(E0,q)dq — will also lead to the correct result in this case because p
will become imaginary when E0 <V .

Consider next a particle with energy E (as shown in Fig. 18.2) which
is flying above the peak of the potential. Classically, the transmission co-
efficient is now unity and the reflection coefficient is zero. But quantum
mechanically, we know that there is a small reflection coefficient R �= 0
which is now exponentially small. As an example, consider a potential
(chosen because the exact solution is known!) of the form

V (x) =
V0

1+ e−x/a . (18.34)

The reflection coefficient for this case happens to be

R =
sinh2π(k1 − k2)a
sinh2π(k1 + k2)a

; T = 1−R , (18.35)

where we have defined

k1 =
1
h̄

√
2mE ; k2 =

1
h̄

√
2m(E −V0) . (18.36)
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What happens in the
complex plane

Rule for getting
reflection coefficient

How do we get this result from a WKB like approximation? The p(E,q)
remains real now and hence integrating pdq over any range of real q will
not lead to tunnelling probability. So it is obvious that going to imaginary
time is not going to work and a different trick is needed. What we need to
do, is to go to complex coordinates and look at the paths in the complex
plane [70, 71].

To illustrate this procedure, it will be useful to consider the turning
points for the problem defined by the equation E = V (z) where we have
now analytically continued from real x to complex x. When the energy is
like E0 in Fig. 18.2, we see that there are two turning points, both of which
are real indicated by x1 and x2 in Fig. 18.2. What is more, there is a branch
cut in the real axis in the complex plane between x1 and x2. The standard
tunneling problem now corresponds to integrating through the potential
along the path C1 shown in Fig. 18.3. You can convince yourself that this
will give the correct result.

x2x1

C1

Fig. 18.3: Tunneling through a potential by a particle with energy E0 in Fig. 18.2 can
be described using the contour C1. The turning points x1 and x2 (where E =V (x)) are
on the real axis with a branch cut connecting them in the complex plane.

As we increase the energy from E0, the turning points approach each
other and coalesce together at some point when the energy is just equal to
the maximum of the potential. When the energy increases further so that
all regions are classically accessible, there are no real turning points. The
equation E = V (z) will, of course, have complex solutions. We will pick
the complex solution for which the turning point is closest to the real axis.
For illustration, consider a situation like the one shown in Fig. 18.4. The
branch cuts are now on the imaginary axis for the simplest case one can
consider.

We want a rule to determine the exponentially small reflection coeffi-
cient in this particular case. This rule is essentially based on distorting the
path in the complex plane in the form of the curve C2 shown in Fig. 18.4.
The reflection coefficient is now given by the expression

R =

∣∣∣∣exp
(∫

C2

k(z)dz
)∣∣∣∣

2

. (18.37)
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C2

x1

x2

Fig. 18.4: The over-the-barrier-reflection by a particle with energy E in Fig. 18.2 can
be described using the contour C2. The turning points x1 and x2 (where E =V (x)) are
now on the imaginary axis with the branch cuts as shown in the figure.

Let us illustrate this for the case of the potential in Eq. (18.34) for
which the branch points, in the case of E >V0, occur at

xc =−a ln
(

1− V0

E

)
± ia(2n+1)π; n = 0,1,2, . . . . (18.38)

The contribution from the branch point closest to the real axis (viz., the
one with n = 0) will dominate the result and the rest will be exponentially
small and can be ignored. The choice of the contour in Fig. 18.4 shows that
the path is ascending on the first sheet and descending in the second which
ensures that R < 1. Then the relevant WKB integral along the contour has
the form ∫

C2

k(z)dz = φ1 +2iσ1 , (18.39)

where φ1 is real and

σ1 = ik1

∫ x0+iπa

x0

dx
(

1− 1
E

V (x)
)1/2

, (18.40)

with

x0 = Re xc =−a ln
(

1− V0

E

)
. (18.41)

It is clear from our expression for the reflection coefficient Eq. (18.37),
that φ1 does not contribute, and, in σ1, only the real part makes a contri-
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Some maths,
slightly tricky

Final result

Verified: all is fine

bution. With some tricks in contour integration, we can easily show that

Re σ1 = π k1a
(

1− V0

E

)1/2

= π k2 a . (18.42)

One way to proceed is as follows. The contour integral we needed to cal-
culate is of the form

I =
∫ x0+iπa

x0

dx
(

1− ρ
1+ e−x/a

)1/2

, (18.43)

where

x0 =−a ln
(

1− V0

E

)
, 0 < ρ =

V0

E
< 1 . (18.44)

To evaluate this, we introduce the variable

z = 1− ρ
1+ e−x/a , (18.45)

which converts the integral to the form

I = a
∫ 2

(
1−ρ
2−ρ

)
0

dz
(

1
1− z

+
1

ρ−1+ z

)
. (18.46)

The singularity is now at z = (1− ρ). If we deform the contour around
this point by a tiny semicircle, we pick up the imaginary contribution:

Im I = π a
√

1−ρ , (18.47)

so that
Reσ1 = Im k1I = π ak2 . (18.48)

Substituting this result in Eq. (18.37), we get our reflection coefficient:

R =

∣∣∣∣exp
(

i
∫

C4

k(x)dx
)∣∣∣∣

2

= e−4Reσ1 = e−4πk2a . (18.49)

As a check, we can compare it with the leading term of the exact result in
Eq. (18.35) which is given by

lim
h̄→0

sinh2π(k1 − k2)a
sinh2π(k1 + k2)a

=
exp2π(k1 − k2)a
exp2π(k1 + k2)a

= exp(−4π k2 a) . (18.50)

Clearly, we got the correct result.
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It is interesting that this procedure involving the complex path picks
out the exponentially small reflection coefficient which is non-analytic in
h̄. In fact, this procedure of the complex path is more general than you
might think. By choosing the contours appropriately, we can also directly
obtain the transmission coefficient in this particular case (which, of course
is nearly unity because T = (1−R)). You can also work out the transmis-
sion and reflection coefficient in the usual tunneling case by the complex
path method. But in this case, the complex time procedure is much more
natural.



Classical physics:
If it is not there, it
is not there

Quantum Physics:
If it is not there, it
may still be there

An eerie force

19Nothing matters a lot

An electromagnetic field can exert a force on a charged particle. The ex-
pression for this force, viz. the Lorentz force, is given by q(EEE + vvv×BBB).
This tells you that, if EEE and BBB vanish, then there is no force. Similarly,
we do not expect any Lorentz force to arise when there are no charged
particles. All these sound quite reasonable.

Unfortunately, the real world is quantum mechanical, governed by
quantum amplitudes, the uncertainty principle and what not. The quan-
tum theory of the electromagnetic field leads to the notion of photons, and
the closest description of the “absence of electromagnetic field” would
correspond to a quantum state with zero photons, which is usually called
the vacuum state of the electromagnetic field. One would have imagined
that, if there are no photons, then there will be no measurable physical
effects due to the electromagnetic field. While this is more or less true
— which is rather reassuring — there are indeed interesting situations in
which it is not true! We will describe [72] one such context, called the
Casimir effect, in this chapter.

The simplest — though a bit idealized — description of the Casimir
effect is the following. Consider two parallel, perfectly conducting, plates
kept in otherwise empty space, separated by a distance L. Then, they will
attract each other with a force

F =− π2

240
h̄c
L4 A , (19.1)

where A is the cross-sectional area of either plate!! Note that there are no
net charges put on the plates; we are not talking about a charged parallel
plate capacitor. The force acts between two plates kept in the vacuum. This
effect was predicted [73] by the Dutch physicist Hendrick Casimir in 1948
and has been measured in the lab [74,75]. One nice way of understanding
this result is in terms of a tangible force exerted by the electromagnetic
vacuum. Let us see how.
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One way to see it
coming

The q and p can
fluctuate even if
E = 0; don’t confuse
these two!

Why vacuum
fluctuations arise

Two simplifications

Before launching into mathematics, let us try to understand the basic
reason for this phenomenon in qualitative terms. Consider the familiar
example of a harmonic oscillator, with the Hamiltonian

H(p,q) =
1
2
[p2 +ω2q2] . (19.2)

We have set the mass of the particle to unity for simplicity. Classically, the
minimum energy for such a system is zero (Eclass = 0), which is achieved
when q = p = 0. We know, however, that this is not possible in quan-
tum theory, essentially because of uncertainty principle. To minimize the
potential energy, we need to set q = 0; but if we know the position to
such infinite precision, the momentum will be infinitely uncertain and we
cannot guarantee a low value for p2/2! So to minimize the total energy,
we need to allow for some amount of fluctuation in both q and p that is
commensurate with uncertainty principle Δ pΔq� h̄. The resulting ground
state will then have a non-zero energy Equant = (1/2)h̄ω .

Suppose we consider a different physical system with the Hamiltonian
Hnew = H(p,q)− (1/2)h̄ω where H(p,q) is given by Eq. (19.2). Since
the subtraction of a constant from the Hamiltonian does not change the
equations of motion, we still again have a harmonic oscillator but with a
shift in the energy. Classically, the minimum energy state will still corre-
spond to q = p = 0 but with energy Eclass = −(1/2)h̄ω . However, quan-
tum mechanically, the ground state will exhibit fluctuations in q and p but
this state will now have zero energy; Equant = 0! This is the crucial point.
Quantum mechanics allows you to have a state for the harmonic oscilla-
tor with the Hamiltonian Hnew(p,q) such that Equant = 0, which can host
fluctuations in the dynamical variables q and p.

Something very analogous happens in the case of an electromagnetic
field. As we shall see, the electromagnetic field can be thought of as a
bunch of harmonic oscillators. The ground state will correspond to a state
of zero photons and one can also arrange matters such that it has zero
energy. But the electric and magnetic fields will play roles analogous to
p and q of the oscillator and they will exhibit fluctuations in the ground
state — which are usually called vacuum fluctuations. Therefore, one can-
not really say that the electromagnetic fields vanish in the vacuum state
even though we can make its energy vanish. This is completely analogous
to the fact that we cannot say the position q of the oscillator vanishes in
the ground state of the oscillator. Once we recognize this fact, it is not
surprising that the electromagnetic vacuum can exert forces on bodies. In
real life, the situation is a little bit more complicated because the proce-
dure analogous to the subtraction of (1/2)h̄ω is more non-trivial in the
case of the electromagnetic field; but the essential idea is the same.

Let us now try to understand this mathematically. As it turns out, the
essential idea can be illustrated by ignoring two complications of the real
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Degrees of freedom
in Fourier space

Minor irritation,
disposed of

world. The first is the the vector nature of electromagnetism and the sec-
ond is the fact that space is three dimensional. We will first work out a
simpler picture using a scalar field with just one degree of freedom (rather
than with the electromagnetic field) and also ignoring the two transverse
directions and treating space as one-dimensional. After we work out the
simplified picture, we will describe how it generalizes to the real case.

Once we ignore the vector nature of the electromagnetic field, we can
work with a single scalar field φ(t,x) which — if you want — can be
thought of as analogous to any one component of the electromagnetic
field. In the absence of sources, we know that each component of the field
satisfies the wave equation, which can now be written as:

∂ 2φ
∂ t2 − ∂ 2φ

∂x2 = 0 . (19.3)

In three dimensions, the second term would have been −∇2φ which be-
comes one-dimensional when we ignore two spatial coordinates. We have
also chosen units with c = 1. This equation can be simplified by introduc-
ing the spatial Fourier transform Qk of φ(t,x) by

φ(t,x) =
∫ ∞

−∞
dk
(2π)

Qk(t)exp[ikx] . (19.4)

Substituting this in Eq. (19.3), we find that Qk(t) satisfies the equation
Q̈k + k2Qk = 0. The field φ(t,x) is completely specified by the function
Qk(t) so that we can think of Qk(t) as the dynamical variables describing
our system. The fact that we are dealing with the field translates into the
fact that we now have an infinite number of dynamical variables, one for
each value of k. Other than that, we can work directly with Qk(t) instead
of the original field φ(t,x).

One minor problem with Qk(t) is that it is a complex number (since
φ(t,x) is real) and we would like to work with dynamical variables that
are real. This is easily taken care of. As Qk is complex, we have two
degrees of freedom corresponding to the real and imaginary parts of Qk
for each k with the constraint Q���

k =Q−k. If we write Qk = (Ak+ iBk), then,
since φ is a real scalar field, we can relate the variables for k to that for
−k as Ak = A−k and Bk =−B−k. Evidently, only half the modes constitute
independent degrees of freedom. Therefore, we can work with a new set
of real modes qk, defined for all values of k with a suitable redefinition,
say, by taking qk = Ak for one half of k and q−k = Bk for the other half.
This will, of course, lead to the same equation but for the real variable
qk(t):

q̈k + k2qk = 0 . (19.5)

That is, the dynamical variable qk(t) satisfies the harmonic oscillator
equation with frequency ω = |k|, for each value of k. Our field is math-
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ematically the same as an infinite number of harmonic oscillators, one
for each k. It follows that everything we know about harmonic oscillators
can now be applied to this system. In particular, we can quantize the field
by quantizing each of the harmonic oscillators qk(t). (In fact, that is the
essence of quantum field theory of non-interacting fields; the rest is just
detail.)

Classically, we can now construct the ground state by taking qk = 0
for all values of k. This will, of course, make the field vanish along with
its energy, as is to be expected from a sensible ground state. But, as we
discussed earlier, this does not hold for the quantum ground state. The
ground state of the harmonic oscillator for a given value of k is described
by the ground state energy eigenfunction

ψ(qk) =
(ωk

π

)1/4
exp

(
−1

2
ωkq2

k

)
. (19.6)

The ground state wavefunction for the full system, made of a bunch of
independent oscillators, can be described by the product of the ground
state wavefunctions of each of the oscillators:

Ψ [φ(x)] =∏
k

(ωk

π

)1/4
exp

(
−1

2
ωkq2

k

)
≡ N̄ exp

[
−1

2

∫ ∞

−∞
dk
(2π)

ωkq2
k

]
.

(19.7)

This expression can be interpreted along similar lines as the harmonic
oscillator wavefunction in usual quantum mechanics. Suppose we have a
harmonic oscillator in the ground state and we measure the position q.
Then the relative probability that we will get a value q = a, compared to
a value q = b is given by:

R =
|ψ(a)|2
|ψ(b)|2 = exp

(−ω[a2 −b2]
)
. (19.8)

Now suppose we have a quantum field which is in the ground state and we
measure the field everywhere at, say, t = 0. Then, there is some probability
that we will get a field configuration described by the function φ(0,x) =
f1(x) and some other probability that field configuration is described by
the function φ(0,x) = f2(x). Just as in the previous case, we want to know
the relative probability of getting one configuration compared to another.
To find this, we first obtain the spatial Fourier transforms of f1(x) and
f2(x) and call them ak and bk. Then, the relative probability is given by

R =
|Ψ( f1(x))|2
|Ψ( f2(x))|2 = exp

(
−
∫ ∞

−∞
dk
(2π)

ωk[|ak|2 −|bk|2]
)

. (19.9)
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For any choice of f1(x) and f2(x) the above number can be computed,
allowing us to determine the relative probability for the vacuum state to
host two different field configurations.

You would have noticed that we switched to relative probabilities from
absolute probabilities in this discussion. For a single harmonic oscilla-
tor, one could have said that |ψ(q)|2dq gives the absolute probability of
finding the particle in the interval (q,q+ dq). When we have an infinite
number of oscillators, the normalization factor N̄ in Eq. (19.7) involves
an infinite product which is hard to define rigorously. We bypass this by
using relative probabilities, in which the normalization factor cancels out.

Before we proceed further, let me mention the corresponding result in
three spatial dimensions. In this case Eq. (19.7) has the obvious general-
ization to:

Ψ [φ(xxx)]=∏
k

(ωk

π

)1/4
exp

(
−1

2
ωk|qk|2

)
= N̄ exp

[
−1

2

∫ d3kkk
(2π)3ωk|qk|2

]
.

(19.10)
In fact, in this case it is nicer to exhibit the result in terms of the field
configuration itself by usingωk = |kkk| andωk|qk|2 = k2|qk|2/|kkk|. Since ikkkqk
is essentially the Fourier spatial transform of ∇φ , we can easily obtain

∫ d3kkk
(2π)3 ωk|qkkk|2 =

∫ d3kkk
(2π)3

|kkk|2|qkkk|2
|kkk| =

1
2π2

∫
d3xxx

∫
d3yyy

{
∇xxxφ ·∇yyyφ
|xxx− yyy|2

}
.

(19.11)
Substituting this into Eq. (19.10) and taking the modulus, we get the prob-
ability distribution in the ground state to be:

P[φ(xxx)] = |Ψ [φ(xxx)]|2 = N exp
{
− 1

2π2

∫ ∫
d3xxx d3yyy

∇xxxφ ·∇yyyφ
|xxx− yyy|2

}
,

(19.12)
with N = |N̄|2. Once again, this expression shows clearly that the vacuum
state of the field can host — what is usually called — zero point fluctua-
tions of the field variable φ . The probability that one detects a particular
field configuration φ(xxx) when the field is in the vacuum state can be ob-
tained by evaluating the value of P for this particular functional form
φ(xxx). The result is independent of time because of the stationarity of the
vacuum state. Given the ambiguity in the overall normalization factor N,
this probability should again be interpreted as a relative probability. That
is, the ratio (P1/P2) will give the relative probability between two field
configurations characterized by the functions φ1(xxx) and φ2(xxx).

Let us now ask what happens if we introduce two perfectly conduct-
ing parallel plates into the vacuum. The fact that the plates are perfectly
conducting requires the electromagnetic field — for which our φ(t,xxx)
is a proxy — to satisfy some non-trivial boundary conditions at x = 0
and x = L where the plates are located. For the scalar field, we can
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take the boundary condition to be that the field vanishes at the plates:
φ(t,0) = φ(t,L) = 0 in one spatial dimension. You cannot describe a
field satisfying such a boundary condition using the Fourier integral in
Eq. (19.4) with k taking all possible values in −∞ < k < ∞. Instead, we
must restrict it to a discrete — though infinite — set of values given by
k = n(π/L) and write:

φ(t,x) =
∞

∑
n=1

qn(t)sin
[
n
πx
L

]
, (19.13)

so that the boundary conditions at x = 0 and x = L are satisfied. We still
have to deal with an infinite number of oscillators, but their frequencies
are now given by ωn = kn = n(π/L).

If we now work out the corresponding ground state, it will be different
from the one described by Eq. (19.7) because the integral over k will be
now replaced by the sum over n. This is needed because, our boundary
condition tells us that we have prevented the ground state from having
non-zero probability for field configurations which do not vanish at the
plates. The introduction of the plates — through the change in the bound-
ary condition — has changed the ground state.

What about the energy of the ground state with and without the plates?
They will also be different. In the absence of plates, each harmonic
oscillator contributes an energy (1/2)h̄ω = (1/2)h̄|k| leading to a total
ground state energy per unit length of space to be the integral over all k of
(1/2)h̄|k|; so the energy in a region of length L will be:

E0 =
L

(2π)

∫ ∞

−∞
dk

1
2

h̄|k|= L
(2π)

∫ ∞

0
dk h̄k . (19.14)

This is manifestly infinite, essentially because there are an infinite num-
ber of harmonic oscillators. What about the ground state energy in the
presence of the plates? This is given by the sum

E ′
0 =

1
2

∞

∑
n=0

h̄ωn =
1
2

∞

∑
n=0

h̄(nπ/L) , (19.15)

which is also infinite, essentially given by the sum of all positive integers.

These infinities are bad news but there is a trick to get around them.
As we said before, the equation of motion for the k-th oscillator will not
change if we subtract (1/2)h̄ωk from the Hamiltonian, but it will “regu-
larize” the ground state energy to zero. This is equivalent to looking at the
difference (E ′

0 −E0) as the physically relevant quantity. To study this, it
is convenient to introduce in Eq. (19.14) a continuous variable n via the
equation k = (π/L)n. Then, we get from Eq. (19.14) and Eq. (19.15):

(E ′
0 −E0) =

h̄π
2L

[
∞

∑
n=0

n−
∫ ∞

0
dnn

]
. (19.16)
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You may think that this is not of much help because this is of the form
(∞−∞) which does not have a precise meaning. That is true but there
are ways of giving meaning to such expressions in a fairly systematic
manner. The simplest procedure is to consider, instead of the expression
in Eq. (19.16), the expression:

(E ′
0(λ )−E0(λ ))≡ h̄π

2L

[
∞

∑
n=0

n exp(−nλ )−
∫ ∞

0
dnnexp(−nλ )

]
.

(19.17)

Here we have multiplied both the expressions by a “regulator function”
exp(−nλ ) where λ is just a parameter. Both the expressions as well as
their difference are now finite and the idea is to first compute the differ-
ence as a function of λ and then take the limit of λ → 0 hoping for the
best. That is, we interpret the expression in Eq. (19.16) as the limit of
the expression in Eq. (19.17) when λ → 0. I will let you work out the
expressions. You should first get:

∞

∑
n=0

nexp(−nλ ) =
e−λ

(1− e−λ )2 =
1
λ 2 − 1

12
+

λ 2

240
+O(λ 4) , (19.18)

which diverges when λ → 0, as to be expected. Similarly,
∫ ∞

0
dnnexp(−nλ ) =

1
λ 2 , (19.19)

which also diverges when λ → 0. But, surprisingly, the difference between
Eq. (19.18) and Eq. (19.19) remains finite as λ → 0:

∞

∑
n=0

nexp(−nλ )−
∫ ∞

0
dnnexp(−nλ ) =− 1

12
+O(λ 2)→− 1

12
, (19.20)

when λ → 0. This allows us to obtain the following remarkable result:

E(L)≡ (E ′
0 −E0)≡ lim

λ→0
(E ′

0(λ )−E0(λ )) =− π h̄
24L

. (19.21)

So, we see that the ground state energy of the system with the plates —
when regularized by subtracting away the energy in the absence of the
plates — is a negative number and is inversely proportional to the separa-
tion between the plates! (You may wonder whether the result will change
if you use a different cutoff function other than exp−nλ in Eq. (19.17).
One can actually prove that it will not, as long as the function satisfies
some reasonable conditions.)

It is clear that the energy in Eq. (19.21) will lead to an attractive force
F = −(dE/dL) ∝ L−2 between the plates, since reducing the separation
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between the plates leads to the lowering of the energy. A more physical
way of thinking about this result is as follows. If we change the separa-
tion between the plates by an amount ΔL, the energy of the configuration
will change by (dE/dL)ΔL which must be the work done by the agency
separating the plates. Equating it to −FΔL, where F is the force acting
between the plates, we find that F =−dE/dL.

In the mythical world of one spatial dimension, the plates are zero-
dimensional points which are not of practical use. The corresponding cal-
culation for the electromagnetic field in 3-dimensions is more complicated
algebraically but all the concepts remain the same. The final result in this
case is an expression for energy per unit transverse area of the plates,
given by:

(E ′
0 −E0)

A
=− π2

720
h̄c
L3 , (19.22)

where we have re-introduced the c factor. The force per unit area acting
between the plates is now given by

F
A
=− d

dL
(E ′

0 −E0)

A
=− π2

240
h̄c
L4 . (19.23)

This tiny force has actually been measured in the lab!

Let me outline the steps involved in this derivation. For the electromag-
netic field in (1+3) dimensions, we consider a region between two parallel
conducting plates, each of area L×L, separated by a distance a. We will
assume that L � a and will be interested in computing the force per unit
area of the conducting plates by differentiating the corresponding expres-
sion for the zero-point energy with respect to a. As in the previous case,
we want to compute the zero-point energy in the presence of the plates,
and in their absence, in the 3-dimensional volume (L2a), and compute the
difference.

The energy contained in this region in the absence of the plates is given
by the integral

E0 = 2
∫ L2d2k

(2π)2

∫ adk3

2π

[
1
2

√
k2

1 + k2
2 + k2

3

]

=
∫ L2d2k

(2π)2

∫ ∞

0
dn

√
k2

1 + k2
2 +

(nπ
a

)2
, (19.24)

where the overall factor 2 in front in the first line takes into account two
polarizations and we have set k3 = (nπ/a) with a continuum variable n to
obtain the second line. (However, note that, due to the change of the limits
of integration, dk3 = 2dn(π/a).) Writing the transverse component of the
wave vector as k2

⊥ ≡ k2
1 + k2

2 ≡ (π/a)2μ , we can re-write this expression
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as an integral over μ and n in the form

E0 =
L2

2a

∫ ∞

0
k⊥dk⊥

∫ ∞

0
dn[μ+n2]1/2 =

π2L2

4a3

∫ ∞

0
dμ

∫ ∞

0
dn
[
μ+n2]1/2

.

(19.25)

The integrals in both Eq. (19.24) and Eq. (19.25) are, of course, are diver-
gent — as to be expected.

Let us next consider the situation in the presence of conducting plates.
This will require replacing the integral over n by a summation over n
when n �= 0. When n = 0, the corresponding result has to be multiplied
by a factor (1/2) because only one polarization state contributes. It is
straightforward to determine the allowed modes in this case and you will
find that there are two polarizations, each contributing the energy:

ωk,n =

√
k2

1 + k2
2 +

(nπ
a

)2
, (19.26)

when n �= 0, and one polarization contributing when n = 0. Therefore, the
corresponding expression in the presence of the plates is given by

E ′
0

L2 =
π2

4a3

[
∞

∑
n=1

∫ ∞

0
dμ (μ+n2)1/2 +

1
2

∫ ∞

0
dμ μ1/2

]
. (19.27)

We can evaluate both the divergent integrals exactly as before using a cut-
off function. But just for fun, we will do it in a different way which adds
to the mystery!

The new idea is to give meaning to the integral in Eq. (19.27) directly,
without subtracting anything. That is, you just compute the integral in the
presence of plates and ‘regularize’ its divergence by a trick. To do this,
consider the integral

∫ ∞

0
dμ (μ+n2)−α =

1
(α−1)

n−2(α−1) , (19.28)

which is well defined for sufficiently large α . We can therefore write

∫ ∞

0
dμ μ−α = lim

Λ→0

∫ ∞

0
dμ (μ+Λ 2)−α = lim

Λ→0

[
1

(α−1)
Λ−2(α−1)

]
.

(19.29)

If you put α =−1/2 in this relation, you can prove the incredible result:

∫ ∞

0
dμ μ1/2 = lim

Λ→0

[
1

(−3/2)
Λ 3
]
= 0 . (19.30)

In the language of dimensional regularization, a pet trick in high energy
physics, this means that several power law divergences can be “regular-
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ized” to vanish. This means we need not worry about the second integral
within the square bracket in Eq. (19.27). It follows that the quantity we
need to evaluate in Eq. (19.27) is given by the expression

∞

∑
n=1

∫ ∞

0
dμ

(
μ+n2)−α =

1
(α−1)

∞

∑
n=1

1
n2(α−1) =

1
(α−1)

ζ (2α−2) ,

(19.31)

in the limit of α →−(1/2) where we have introduced the Riemann zeta
function,

ζ (x) =
∞

∑
n=1

n−x . (19.32)

You will recognize that the expression in Eq. (19.31) is just ζ (−3) which
is the sum of the cubes of all the integers! One can define this quantity by
analytic continuation in the complex plane and then one obtains the result
(see Appendix to learn this black magic)

ζ (1−2k) =−B2k

2k
, (19.33)

where Bk (called the k−th Bernoulli number) is defined through the series
expansion:

t
et −1

=
∞

∑
k=0

tk

k!
Bk . (19.34)

Using Eq. (19.31) and Eq. (19.33), we get the final result to be:

E ′
0

L2 =
π2

4a3

[
B4

6

]
=

π2

24a3

(−1
30

)
=− π2

720a3 , (19.35)

where we have used the fact that B4 =−(1/30). The corresponding force
of attraction (per unit area of the plates) is given by

f =−∂E

∂a
=− π2

240a4 . (19.36)

It is this force (which works out to 10−8 N for a = 1 μm, L = 1 cm) that
has been observed in the lab.

Incidentally, with the same “regularization”, quantum field theorists
often conclude that the sum of all positive integers is not only finite but is a
negative fraction (−1/12)!The corresponding zeta function regularization
will reproduce the (1+1) scalar field result without, of course, making us
any wiser as to what is going on.
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Box 19.1: The Casimir Effect: Some History

The history of the Casimir effect is rather curious in some aspects.
The effect gets its name from a paper published by H.B.T. Casimir
in 1948 in the Proceedings of the Royal Academy of Sciences of
Netherlands. This paper had the basic result that two metallic plates
would attract each other, but it did not really draw much attention in
the next two or three decades. In fact, another work by Casimir and
Poldder published in 1948 got a lot more attention, possibly because
it was published in the Physical Review rather than a Dutch journal.

Another curiosity is that, in the early decades after the publication,
the Casimir effect was considered neither spectacular nor mysterious.
Recall that Casimir’s paper came 75 years after the celebrated thesis
of Van der Waals which introduced the weak attractive force between
neutral molecules and 18 years after F. London gave an explanation
for the Van der Waals force in terms of fluctuating electric dipole mo-
ments. So the fact that neutral metallic bodies — as long as they in-
ternally contain charged particles — could exert forces on each other,
did not cause much surprise to the community.

Years later, in 1954, E.M. Liftshitz You can get Casimir
effect without QFT
mumbo-jumbo

provided a more comprehen-
sive theory of the interaction between two conducting plates which,
among other things, handled the case of finite conductivity. This ex-
pression for the force has a Taylor series expansion in (1/σ), where σ
is the conductivity, and the leading order term — obtained in the limit
of infinite conductivity — gave precisely Casimir’s result. Again, this
could be obtained as a result of direct electromagnetic coupling be-
tween the metals as long as a stochastic, fluctuating force is intro-
duced. None of these, by itself, could be termed mysterious.

The mystery of the Casimir effect arises from the fact that it could
be re-derived without really using the interaction between the con-
stituents of the two metals. But how come

mumbo-jumbo gives
the same result?

All the effect of these constituent charged
particles is contained in a simple boundary condition on the metals in
the infinite conductivity limit. The rest of the calculation uses the vac-
uum fluctuations of the electromagnetic field, its energy and a rather
dubious subtraction scheme — however rigorously you deal with di-
vergent series! — to get the same result. As I have explained, part of
the mystery is in intuitively understanding why such different proce-
dures lead to the same final expression.

Plates attract but
spheres repel!

The situation is complicated by another fact: While the force be-
tween two parallel metallic conductors is attractive, this need not
be a general feature. For example, if you make two hemispherical
bowls from conducting shells of matter and bring them close together,
the Casimir force between them is actually repulsive; the geometry
makes a lot of difference!
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The whole phenomena is quite bewildering and if you are shaking your
head in disbelief, I will not blame you! But the reality of this effect is be-
yond dispute and it has been derived from several different perspectives
over years. The essential lesson is that the pattern of quantum fluctuations
is sensitive to the boundary conditions we impose, both mathematically
and practically. The ground state of the electromagnetic field in the pres-
ence of two parallel, conducting plates is quite different from the ground
state in the absence of the plates. This alone is easy to understand because
the ground state in the presence of the plates must ensure that, the field
configurations which do not satisfy the boundary conditions at the plates,
have zero probability for their existence. But what is rather curious is that
this ground state has an energy which differs from that in the absence of
the plates by a finite amount. There is no simple explanation for this fact,
which makes the Casimir effect all the more fascinating.

Appendix: We will first derive an integral representation for the zeta func-
tion ζ (s) which allows analytic continuation for negative values of s. To
do this, we begin with the integral representation for Γ (s) and express it
in the form:

Γ (s) =
∫ ∞

0
dt̄ t̄s−1 e−t̄ = ns

∫ ∞

0
dt ts−1 e−nt , (19.37)

where we have set t̄ = nt to arrive at the last expression. Summing the
expression for Γ (s)/ns over all n, we get the result:

Γ (s)
∞

∑
n=1

1
ns =

∫ ∞

0
dt
(

ts−1

et −1

)
= Γ (s)ζ (s) . (19.38)

Let us now consider the integral in the complex plane

I(s)≡
∫

C
dz

zs−1

ez −1
, (19.39)

over a contour consisting of the following paths: (i) Along the real line
from x = ∞ to x = ε where ε is an infinitesimal quantity; (ii) On a circle
of radius ε around the origin going from θ = 0 to θ = 2π; (iii) Along
the real line from ε to ∞. Along the contour in (i) we get the contribution
−Γ (s)ζ (s); it can be easily shown that the contribution along the circle
will only pick up the residue at the origin. Finally, along (iii) one obtains
the contribution e2πisζ (s)Γ (s). We therefore find that

∫
C

dz
zs−1

ez −1
= Γ (s)ζ (s)[e2πis −1] = Γ (s)ζ (s)eiπs(2isin(πs))

= ζ (s)eiπs(2πi)
1

Γ (1− s)
. (19.40)
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In arriving at the last expression, we have used the standard identity

Γ (s)Γ (1− s) =
π

sinπs
. (19.41)

This allows us to express ζ (s) as a contour integral in the complex plane
given by

ζ (s) = e−iπsΓ (1− s)
1

2πi

∫
C

dz
zs−1

ez −1
. (19.42)

By studying the analytical properties of the right hand side, it is easy to
show that this expression remains well defined for negative integral values
of s. For example, when s =−1, the integrand in the contour integral can
be expressed as (1/z3)[z/(ez − 1)]. The residue at the origin is therefore
governed by the z2 term in the power series expansion of [z/(ez−1)], giv-
ing a contribution proportional to B2. Similarly, for s =−3, the integrand
in the contour integral can be expressed as (1/z5)[z/(ez −1)]. The residue
at the origin is therefore governed by the z4 term in the power series ex-
pansion of [z/(ez −1)], giving a contribution proportional to B4. In fact, it
is easy to show, putting all the factors together, that

ζ (1−2k) =−B2k

2k
for k = 1,2, ... . (19.43)

This gives ζ (−1) = −B2/2 = −1/12, ζ (−3) = −B4/4 = 1/120 etc.
These results provide an alternate way of giving meaning to the divergent
series which occur in the computation of the Casimir effect.
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20Radiation:
Caterpillar becomes Butterfly

The electric field of a charged particle at rest has two key properties: (i) It
decreases as (1/r2) where r is the distance from the charged particle. (ii)
It is directed radially outward from the position of the charged particle.
Given the Coulomb field of a charge at rest, one can find the field of a
charge moving with uniform velocity by a Lorentz transformation. This
leads to the result that, if the charge moves with a uniform velocity vvv, the
field is given by

EEE =
qrrr
r3

(1− v2/c2)(
1− (v2/c2)sin2 θ

)3/2 ; BBB =
1
c

vvv×EEE , (20.1)

where θ is the angle between the direction of motion and the radius vec-
tor rrr which has the components (x−Vt,y,z). This, of course, looks more
complicated but, as we would have expected, it still shares the two key
properties with the fields produced by the static charge. The electric field
falls as (1/r2) at large distances and it is radially directed from the instan-
taneous position of the charge.

The energy flux corresponding to the electromagnetic field, given by
the Poynting vector, scales as the square of the electromagnetic field. If
the field decreases as (1/r2), the energy flux will fall as (1/r4) and, since
the area of a spherical surface scales as r2, the total energy flowing through
a sphere at large distances from the charge falls as r2 × (1/r4) = (1/r2).
Therefore, one cannot transfer energy to large distances with this kind of
field. This is understandable because such a transfer cannot take place in
the rest frame of the charge — in which we only have a static Coulomb
field — and since we expect physical processes to be Lorentz invariant, it
should not happen for a charge moving with uniform velocity either.

But, when the charge is accelerating, something dramatic happens. The
electric field picks up an additional term which falls only as (1/r) at large
distances. The change from the (1/r2) dependence to the (1/r) depen-
dence makes a huge difference! When the field falls as (1/r) at large dis-
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Let us forget the
textbook derivation!

Position, veloc-
ity, acceleration;
nothing else matters

tances, the energy flux will fall as (1/r2) and the total energy flowing
through a sphere at large distances from the charge is r2 × (1/r2) which
is a constant! Therefore, the fields arising from an accelerated charge are
capable of transmitting energy to large distances from the charge. Clearly,
it would be nice to understand better how acceleration leads to such a shift
from the (1/r2) to (1/r) dependence — which changes the caterpillar to
a butterfly.

There is also another peculiar feature that arises when the charge un-
dergoes an accelerated motion. The Coulomb field of a charge at rest, and
that of a charge moving with a uniform velocity, is radial. That is, the
electric field vector in these cases points radially outward from the instan-
taneous position of the charge. But in the case of accelerated motion, the
electric field picks up a transverse component which is perpendicular to
the radial direction. Since a propagating electromagnetic plane wave, for
example, will have an electric field that is transverse to the direction of
propagation of the wave, this fact is crucial for identifying the field gen-
erated by the acceleration with the electromagnetic radiation.

There is a remarkably elegant and simple way of understanding both
these features [76]. This approach, originally due to J.J. Thomson [77],
deserves to be more widely known and possibly could replace the rather
unimaginative derivation using Lienard-Wiechert potentials in the class-
rooms! (Thomson’s approach is discussed, for example, in [20] and also
appears in the standard text books [78, 79]; unfortunately these textbooks
create an impression that the result is valid only for non-relativistic mo-
tion.) I will describe this approach and its essential features.

To begin with, let us recall a few elementary facts about Maxwell equa-
tions which connect the electromagnetic fields to the motion of the source.
Since the electric field is EEE =−(1/c)(∂AAA/∂ t)−∇φ , we see that the elec-
tric field has a component which depends linearly on (∂AAA/∂ t). It is also
well known that the source for the vector potential AAA is the current jjj, in
the sense that �AAA∝ jjj. Therefore, (∂AAA/∂ t) will have a source that depends
on (∂ jjj/∂ t). Since jjj is linear in the velocity of the charge, we conclude
that the electric field will have a source term which is linear in the time
derivative of the velocity, viz., the acceleration aaa, but not on ȧ, ä, ... etc.

An alternative way of understanding this result is as follows: A charge
q moving with uniform velocity vvv is equivalent to a current jjj = qvvv. This
current will produce a magnetic field (in addition to the electric field)
which scales in proportion to jjj. If aaa = v̇vv �= 0, it will produce a non-zero
(∂ jjj/∂ t) and hence a non-zero (∂BBB/∂ t). Through Faraday’s law, (∂BBB/∂ t)
will induce an electric field which scales as (∂ jjj/∂ t). (That is, if (∂ jjj/∂ t)
changes by factor 2, the electric field will change by factor 2.) It follows
that an accelerated charge will produce an electric field which is linear in
(∂ jjj/∂ t) = qaaa. [This field, of course, is in addition to the usual Coulomb
term which is independent of aaa and falls as r−2.]
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Not now, but then

Power of dimen-
sional analysis

We get the a/r
dependence

A series of clever
choices

Further, since the wave equation �AAA ∝ jjj propagates information at
the speed of light, we also know that the electric field at an event (t,xxx)
is determined entirely by the behaviour of the source at the event (tR,xxx′)
where t − tR = (1/c)|xxx− xxx′| ≡ (r/c). It is usual to call tR as the “retarded
time”.

Before we do any sophisticated mathematics, let us try a bit of dimen-
sional analysis to determine the electric field which arises from the ac-
celeration. We know that the electric field has to be determined by the
charge of the particle q, speed of light c, acceleration a and distance r
(with a and r calculated at the retarded time.) In general, the field will
also depend on the velocity of the particle at the retarded time but we will
choose a Lorentz frame in which the charge was at rest at the retarded
time, thereby eliminating any v dependence. We next use the fact that the
electric field — which is linear in ∂ jjj/∂ t — should be linear in both q and
a, to write

E =C (θ)
qa

cnrm =C (θ)
( q

r2

)( a
cnrm−2

)
, (20.2)

where C is a dimensionless factor, which can depend only on the angle
θ between rrr and aaa, and n and m need to be determined. (Since vvv = 0
in the instantaneous rest frame, the field cannot depend on the velocity.)
From dimensional analysis, noting that E has the dimensions of q/r2 it
immediately follows that (a/cnrm−2) must be dimensionless, leading to
n = 2,m = 1. So we get the result:

E =C (θ)
qa
c2r

. (20.3)

Thus, dimensional analysis plus the fact that EEE must be linear in q and a,
implies the r−1 dependence for the radiation term.

While this result shows why a term linear in acceleration will also have
a (1/r) dependence, it does not really tell us how exactly it comes about.
Moreover, dimensional analysis cannot determine the nature of dimen-
sionless function C(θ). The argument due to J.J. Thomson [77] does both
of these in a rather neat way and I will now describe a slightly modified
version of the same.

Let us consider a charged particle A moving along some arbitrary tra-
jectory zzz(t). We are interested in the electric field, say, produced at an
event P(t,xxx) by this charge. Since the characteristics of the wave equa-
tion shows that information propagates at the speed of light from the
source point to the field point, we already know that the field at P will
be determined by the properties of the trajectory at the retarded time tR.
Further, the electric field can only depend on the position zzz(tR), velocity
żzz(tR) and the acceleration z̈zz(tR) at the retarded time but not on higher time
derivatives. (This is because the source for electromagnetic field only in-
volves up to the first time derivative of the current which is proportional
to the acceleration.) We will now choose our Lorentz frame such that the
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Introduce another
charge you can
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... which produces
the same field

Identify the two
regions of Coulomb
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charge was at rest at the origin of the spacetime coordinates at the retarded
time tR = 0. Let the acceleration of the charge be aaa = z̈zz(tR) at this instant.
We will rotate the coordinate system so that aaa is along the x−axis.

We now consider another charged particle B which was at rest, at the
origin, from t =−∞ to t = 0 and undergoes constant acceleration aaa along
the x−axis for a short time Δ t. For t > Δ t, it moves with constant velocity
v = aΔ t along the x−axis. Let us study the electric field produced by this
charge B at some time t � Δ t. Since Δ t is arbitrarily small, we have
aΔ t � c and we can use the non-relativistic approximation throughout.
Since the trajectory of B matches identically in position, velocity and
acceleration with the trajectory of A , we are really interested in, it follows
that both of them will produce identical electric fields at P . This was the
key insight of Thomson. As we shall see, the field produced by B is fairly
trivial to calculate and hence we can obtain the field due to A .

t > 0 y

(a)

vtct x

t > 0 y

ct x

(b)

vt

Fig. 20.1: A charge was at rest at the origin until t = 0 and was accelerated for a short
amount of time δ t after which it moves with a uniform velocity along the x−axis.
The figure shows the electric field of the charged particle at some time t > 0. (a) The
information that the charge was accelerated has not reached the region r > ct. In this
region, the field is Coulombic and is radially outwards from the origin. (b) In the region
r < ct, the field is that of a charge moving with uniform velocity. This field is radially
outward from the instantaneous position of the charge.

The ‘news’, that the charge was accelerated at t = 0, could have only
traveled up to a distance r = ct in time t. Thus, at r > ct, the electric field
should be that due to a charge located at the origin as shown in part (a) of
Fig. 20.1:

EEE =
q
r2 r̂rr (for r > ct) . (20.4)

At r � ct, the field is that due to a charge moving with velocity v along the
x−axis, given by Eq. (20.1). The key point is that this field is radially di-
rected from the instantaneous position of the charge. When v � c, which
is the situation we are interested in, this is again a Coulomb field radially
directed from the instantaneous position of the charged particle (see part
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The shell of radia-
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(b) of Fig. 20.1):
EEE =

q
r′2

r̂rr′ (for r < ct) . (20.5)

Around r = ct, there exists a small shell of thickness (cΔ t) in which
neither result holds good. It is clear that the electric field in the transition
region should interpolate between the two Coulomb fields. The crucial
question is how we do this while ensuring that the flux of the electric
field vector through any small box in this region vanishes, as it should in
order to satisfy the Maxwell equations. As we shall see below, it turns
out that this requires the field lines to appear somewhat like those shown
in Fig. 20.2. We have concentrated on a single field line in Fig. 20.3
for clarity. One can explicitly work out this condition and prove that
tanθ = γ tanφ where γ = (1− v2/c2)−1/2. (It is done in detail in [78].)
In the non-relativistic limit that we are considering, θ ≈ φ making the
field lines parallel to each other in the inside and outside regions; that is,
QP is parallel to RS. (This is easy to understand because the radial field
is just the Coulomb field both in the outside and in the inside region. For
the flux to be conserved, these two field lines should be parallel to each
other.) What is really interesting is that we now need a piece of electric
field line PR interpolating between the two Coulomb fields. This is clearly
transverse to the radial direction and all that we need to do is to prove that
its magnitude varies as 1/r. Let us see how this comes about.

Fig. 20.2: Combining the field configurations at r > ct and r < ct, shown in Fig. 20.1,
requires the introduction of a transverse electric field in the transition region. Radiation
arises from the necessity to connect two Coulomb fields in the regions r > ct and r < ct
conserving the electric flux.
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ct x

t > 0

vt

R

Q

y

P

S

θ φ

Fig. 20.3: One specific electric field line showing the way a transverse component is
developed. The field line RS (in the region r > ct) is to be connected with the field line
QP in the region r < ct by the field line PR conserving the electric flux. This uniquely
fixes the field line PR, which turns out to be the radiation field.

Why does radiation
field fall as 1/r?

And why does it
travel at the speed
of light?

The situation is described in detail in Fig. 20.4 which is self-explanatory.
Let E‖ and E⊥ be the magnitudes of the electric fields parallel and perpen-
dicular to the direction r̂rr. From the geometry, we have

E⊥
E‖

=
v⊥t
cΔ t

. (20.6)

But v⊥ = a⊥Δ t and t = (r/c), giving:

E⊥
E‖

=
(a⊥Δ t)(r/c)

cΔ t
= a⊥

( r
c2

)
. (20.7)

The value of E‖ can be determined by using Gauss’ theorem to a small pill
box, as shown in the small inset in Fig. 20.4. This gives E‖ = Er =

(
q/r2

)
;

thus, we find that

E⊥ = a⊥
( r

c2

)
.

q
r2 =

q
c2

(a⊥
r

)
. (20.8)

This is the radiation field located in a shell at r = ct, which is propagating
outward with a velocity c. The above argument clearly shows that the
origin of the r−1 dependence lies in the necessity to interpolate between
two Coulomb fields. We have thus determined the electric field generated
due to the acceleration of the charge and have shown that it is transverse
and falls as (1/r)!
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( a )

v⊥t

v t

v⊥t

( b )

Er

E⊥

cΔ
t

r

θ

θ
vt r =

ct

x

E

E

Fig. 20.4: (a) The electric field due to a charged particle which was accelerated for a
small time interval Δ t. For t >Δ t, the particle is moving with a uniform non-relativistic
velocity v along the x−axis. At r > ct, the field is that of a charge at rest in the origin. At
r < c(t−Δ t), the field is directed towards the instantaneous position of the particle. The
radiation field connects these two Coulomb fields in a small region of thickness cΔ t.
(b) Pill box construction to relate the normal component of the electric field around the
radiation zone.

Exact but in a
special Lorentz
frame

We can express this result more concisely in the vector notation as:

EEErad (t,rrr) =
q
c2

[
1
r

n̂nn× (n̂nn×aaa)
]

ret
, (20.9)

where nnn = (rrr/r) and the subscript “ret” implies that the expression in
square brackets should be evaluated at t ′ = t − r/c. Comparison with
Eq. (20.3) shows that C (θ) = sinθ . The full electric field in the frame
in which the charge is instantaneously at rest, is EEE = EEEcoul +EEErad.

We emphasize that this result is exact in the Lorentz frame in which
the charge was at rest at the retarded time. One does not have to make a
non-relativistic “approximation” because v = 0 automatically takes care
of it!. If we now make a Lorentz transformation to a frame in which the
particle was moving with some velocity vvv= żzz(tR) at the retarded time, then
we can obtain the standard, fully relativistic expression with the velocity
dependence. This is algebraically a little complicated because one needs
to make a Lorentz transformation in an arbitrary direction since vvv and aaa
will not — in general — be in the same direction.
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The general result,
in full relativistic
glory
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and acceleration

Some useful scalars

Fortunately, there is an elegant way of doing this using 4-dimensional
tensor notation which maintains manifest relativistic invariance. This will
provide a complete relativistically invariant expression for the electromag-
netic field of an arbitrarily moving charged particle without us ever hav-
ing to mention the Lienard-Wiechert potential. Thus J.J.Thomson’s idea is
quite capable of giving us the complete solution to the problem. I outline
this analysis; more details can be found in Ref. [80].

Consider a charge moving along an arbitrary trajectory zi(τ) whose
electromagnetic field Fab(xi) at the observation point xi is to be evalu-
ated. We shall use units in which c = 1. The electromagnetic field tensor
Fi j is then found by the relation Fi j = ∂ iA j −∂ jAi where Ai satisfies the
equation �Ai =−4πJi with Ji being the current. The F0α terms give the
components of the electric field, and the Fαβ terms lead to the compo-
nents of the magnetic field.

We begin by noting that the electromagnetic field at the observation
point xi may depend only on the relative position Ri = xi − zi(τ), the ve-
locity ui, and the acceleration ai = dui/dτ of the charge, all evaluated
at the retarded time τret, but not on further derivatives of the trajectory.
This result arises from the following: (a) Because electromagnetic signals
propagate at the speed of light, the field at xi is determined by the state
of the source at an earlier position zi(τret) which is related to xi by a null
line; that is, by the condition RiRi = 0. Of the two roots to this equa-
tion, we choose the retarded (causal) solution that satisfies the condition
R0 > 0. This condition determines the retarded time τret. (b) Translational
invariance implies that the field depends only on the relative position Ri of
the charge with respect to the observation point (evaluated at the retarded
time), and not on the absolute positions of the source or the observation
point separately. (c) Because �Ai ∼ Ji, Fik satisfies �Fik ∼ ∂ iJk − ∂ kJi.
Because Ji is at most linear in the velocity of the charge, ∂ iJk is at most
linear in the acceleration, and no further derivatives of the trajectory can
occur in the solution Fik. Therefore, Fi j is a second rank antisymmetric
tensor which is built from Ri, ui, and ai.

At this stage it is convenient to introduce the Lorentz invariant scalar
�= Riui which, in the rest frame of the charge, reduces to:

�= Riui =−R0 =−|RRR| ≡ −R , (20.10)

where (R0)2 = |RRR|2 because of the condition RiRi = 0 and R0 > 0 for
the retarded solution. For simplicity, we will also define a four-vector ni

through the relation Ri ≡ −�(ni + ui). It is easy to see that nkuk = 0, and
nknk = 1. The components of ni are:

ni =
(
− R

�
− γ,−RRR

�
− γvvv

)
, (20.11)
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which reduces, in the rest frame of the charge, to the unit spatial vector
pointing from the charge to the field point: ni = (0,111). We will trade off
the Ri dependence of Fi j for the ni dependence and treat Fi j as a function
of ni, ui, and ai (instead of Ri, ui, and ai).

We next construct two four vectors Ei and Bi, defined as:

Ei = u jFi j , Bi =
1
2
ε i jklu jFkl , (20.12)

where ε i jkl is the totally antisymmetric tensor in D = 4. The vectors Ei

and Bi contain the same amount of information as Fi j as can be seen by
the explicit expression for the latter in terms of the former:

Fi j = uiE j −Eiu j − ε i j
kl ukBl , (20.13)

which can be easily verified by direct substitution of Eq. (20.13) into
Eq. (20.12) and the use of the identities u jE j = 0 and u jB j = 0. These
identities also show that Ei and Bi are both orthogonal to ui, and hence, in
a given reference frame, they contain only three independent components
as required.

The four vectors Ei and Bi have direct physical interpretations and rep-
resent the electric and magnetic fields in the instantaneous rest frame of
the charge with four velocity ui. In this frame, u j = (1,000) so that only
the component u0 contributes, and Ei = u0Fi0 = (0,F0α), because Fi j is
antisymmetric. Hence, the spatial components of Ei = u jFi j correctly rep-
resent the components of the electric field in the instantaneous rest frame
of the charge. Similarly, in the instantaneous rest frame, only the com-
ponent u0 contributes to Bi. Because ε i jkl is completely antisymmetric,
the time component of Bi vanishes in this frame. We see that the spatial
components of Bi are given by Fα β where α,β = 1, 2, or 3. Hence the
spatial components of Bi lead to the correct values of the magnetic field
components in the rest frame.

However, we already know the form of the electromagnetic field in
the instantaneous rest frame from Thomson’s argument: The electric field
is given by Eq. (20.9) with the magnetic field given by BBB = n̂nn× EEE. In
the rest frame, we have ni = (0,111), u j = (1,000), ai = (0,aaa) and Riui = �.
Using these, it is easy to see that Thomson’s electromagnetic fields can be
expressed in four-dimensional notation as:

E i =
q
�2 ni +

q
�
[ai −ni(nkak)]; Bi =

q
�
ε i jklu jnkal . (20.14)

In fact, this completely solves the problem and provides the electric and
magnetic fields in any Lorentz frame. But if we are interested in deter-
mining Fi j (since this is the usual quantity used in relativistic physics),
we can do that by substituting the four-dimensional generalized fields de-
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Larmor formula

rived from the Thomson expression, namely E i and Bi, for Ei and Bi

respectively in Eq. (20.13) and obtain the explicit expression for Fi j. If
we substitute Eq. (20.14) into Eq. (20.13), we obtain

Fi j =
q
�2 u[in j]− q

�
a[iu j] +

q
�
(nkak)n[iu j]− q

�
ε i j

klε l pqruknqarup . (20.15)

To evaluate the expression ε i j
klε l pqruknqarup we use the identity

εi jklε l pqr =−[δ p
i (δ

r
j δ

q
k −δ q

j δ
r
k )−δ r

i (δ
p
j δ

q
k −δ p

k δ
q
j )+δ q

i (δ
p
j δ

r
k −δ r

j δ
p
k )] .

(20.16)

We lower the indices i and j in Eq. (20.15) and then use Eq. (20.16) to
obtain the expression for Fi j:

Fi j =
q
�2 u[in j]−

q
�

a[iu j] +
q
�
(nkak)n[iu j] +

q
�

n[ia j] . (20.17)

The final result is known in the literature. It is obtained by integrating
the Maxwell equations in a four-dimensional notation, and differentiating
the resultant Lienard-Wiechert potentials A j with respect to xi. The present
approach is significantly more elegant and simpler; if you do not believe
me, try differentiating the Lienard-Wiechert potential!

The importance of the (1/r) field, of course, is that it allows propa-
gation of energy in the form of radiation to large distances. The amount
of energy radiated by the system per unit time is given by the Larmor
formula

dE
dt

=
2
3

q2

c3 a2 , (20.18)

which can be easily obtained from the results obtained above. We will
conclude this chapter by discussing some interesting features related to
this formula.

The point of historical importance is related to the radiation emitted
by charges in circular motion. Obviously, a single charge, going around
a circle of radius r with speed v, will have an acceleration a = v2/r and
the radiated power will vary as (v/c)4. But suppose we have two charges
located at diametrically opposite points in a circle with both moving at
the same speed around the circle. In this case, it is easy to show from
symmetry that the dipole moment vanishes and the radiation has to come
from the variation of the quadrupole moment; it will now be proportional
to (v/c)6. Similarly, if we think of three charged particles (all having the
same charge) located 120 degrees apart in a circle, undergoing uniform
circular motion, then we get only octupole radiation. In general, if we have
N charged particles evenly spaced in a ring all co-moving in a circular
orbit, then the radiation will be down by a factor (v/c)2(n+1). In fact, this is
the reason we would often ignore any radiative field from a steady current
going around in a circular orbit.
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The reason Thomson
worried about all
these

This problem was posed and the result was first obtained, again, by
J.J. Thomson [81]. He was trying to explain the fact that electrons in the
atoms do not radiate and he used this calculations to support his model
that the electronic charge in an atom must be smoothly distributed. This
was followed up by Schott [82] by an extensive analysis re-deriving the
results. Curiously enough, all these were soon forgotten and were, in a
way, re-invented around late 1940s when one wanted to study relativistic
electrons in particle accelerators (see, for e.g., Ref. [83, 84]).

Box 20.1: Radiation and Gauss law

Several textbooks introduce the Gauss law∇ ·EEE = 4πρ fairly early on
in electrostatics and connect it up with Coulomb’s law. The integral
form of the Gauss law:∫

EEE(t,xxx) ·nnndA = 4πQ(t) , (20.19)

when applied to a point charge at rest immediately tells you that the
electric field falls as (1/r2). Since the surface area of a sphere in-
creases as r2, the above relation immediately follows.

After having done a fair amount of electrostatics, the text books
will describe radiation fields in a later chapter and never revisit the
Gauss law. But if the Gauss law is tied to (1/r2) electric field and the
radiation field has a (1/r) component, does it mean that we can’t use
Gauss law in general? The issue is further complicated by the fact
that the radiation fields depend on retarded time, while the Gauss law
relates the electric field at time t to the charge distribution at the same
time t. No retardation! Since many students seem to be associating
the Gauss law with the Coulomb law and (1/r2), it is worth clarifying
this point.

Gauss’ law is
applicable to
radiation field
as well

The Gauss law, being one of Maxwell’s equation, is universally
valid and is definitely valid for the radiation field as well. Figure 20.5
illustrates this dramatically. In a region of space, at a given time t,
there are a set of charged particles (q1,q2,q3... are shown explicitly)
in arbitrary, accelerated states of motion. Their trajectories are indi-
cated in the picture and the black dots indicate their positions at a
given instant of time t = t0. The fields produced by the charged parti-
cle are quite different from the Coulomb (1/r2) field and include the
radiative component.
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x
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t = t0

n̂

q1
q2

q3

S

E(t0,x)

Fig. 20.5: Three charged particles are moving in space along the trajectories
shown in the figure. At some time t = t0, all the three charges happen to be inside
a compact region of 3-space enclosed by the surface S . Their positions are
indicated by black dots. The electric field on S is determined by the position,
velocity and acceleration of these charged particles at respective retarded times
when they might not have been inside S . The field produced by the charges will
also involve both Coulomb and radiation components. Nevertheless, the flux of
the electric field through S at time t = t0 is precisely equal to, the total charge
contained inside S at the instant t = t0 because of the Gauss law. Thus, Gauss
law incorporates the radiation field and the retardation effect in a subtle manner.

Make sure you
understand this

Let S be a two dimensional compact surface as indicated in the
figure by a broken line. The flux of the electric field EEE(t0,xxx) at time
t = t0 through the surface S will be precisely equal to 4π(q1 +q2 +
q3) for the situation shown in the figure. The three charges are inside
S at t = t0 but they could have been outside at the respective retarded
times. If there are other charges outside S , they will all contribute to
EEE(t0,xxx) but not to the total charge count. And, as I have emphasized
several times, the fields need not be purely Coulombic.

The magic of it When you think about it, Gauss’ law is quite fascinating. In fact,
if one postulates a generally covariant version of the Gauss law to
be valid for all observers in all states of motion, one can obtain all
the Maxwell equations from it. It does not advertise special relativ-
ity, retardation effects, wave propagation and all that stuff but quietly
recognizes them when considered as a part of the Maxwell equations!
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21Photon: Wave and/or Particle

You know that a blackbody cavity, kept at a given temperature T , will
be filled with electromagnetic radiation of a particular spectral form, viz.,
the Planck spectrum. This is one case where we could have thought of the
radiation either as fluctuating electric and magnetic fields, or as a bunch
of photons. How does this dual role manifest itself? For example, if a
charged particle interacts with the blackbody radiation, do we get the same
results when we treat the radiation as fluctuating electromagnetic fields or
as photons? We will try to understand this equivalence in some simple
contexts in this chapter [20].

To begin with, it is interesting to note that the blackbody radiation,
by itself, exhibits both particle and wave nature. To see this, let us com-
pute the energy fluctuations of the blackbody radiation. For a system in
thermodynamic equilibrium at temperature T , with β ≡ (kT )−1, the mean
energy Ē is given by

Ē =
∑Ee−βE

∑e−βE = Z−1∑Ee−βE =− 1
Z
∂Z
∂β

; Z ≡∑e−βE , (21.1)

where Z is the partition function. Differentiating once again, we get an
expression for mean square fluctuation in energy:

−∂ Ē
∂β

=
1
Z
∂ 2Z
∂β 2 −

(
1
Z
∂Z
∂β

)2

=
〈
E2〉− Ē2 = (ΔE)2 . (21.2)

In the case of blackbody radiation with Ē = h̄ω
(
eβ h̄ω −1

)−1
, direct dif-

ferentiation gives

(Δn)2 ≡
(
ΔE
h̄ω

)2

=

(
Ē

h̄ω

)2

+

(
Ē

h̄ω

)
= n̄2 + n̄ , (21.3)

where n̄ ≡ (Ē/h̄ω) is the mean number of photons with frequency ω and
Δn is the fluctuation in this number.
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All as expected
and nice

The sheer power
of Taylor series
expansion!

Curiously enough, these two terms in Eq. (21.3) represent the fluctua-
tions which will arise when we think of the system as made of waves or
particles. If photons were to be interpreted as particles, then one would
expect (Δn)2 	 n̄, giving the usual Poisson fluctuations (Δn/n) 	 n−1/2.
For this to occur we will need n̄ � n̄2; that is, n̄ � 1, which happens for
β h̄ω � 1. On the other hand, if β h̄ω � 1, we have n̄ � 1 and we get
(Δn)2 	 n̄2 which characterizes the wave-like fluctuations. In these two
limits, given by h̄ω � kT and h̄ω � kT , the expression for n(ω) itself
has simple asymptotic behaviour consistent with the above interpretation.

When h̄ω � kT , we are in the long wavelength, classical regime of
the radiation. Equipartition of energy suggests that each mode (having
two polarization states) should have energy εω = 2× (kT/2) = (kT ) or
nω = (εω/h̄ω) = (kT/h̄ω). This is what we get from the Planck spec-
trum.

When h̄ω � kT , we are in the regime in which photons behave as par-
ticles. In that case, we expect nω = exp(−h̄ω/kT ) based on Boltzmann
statistics. (In this limit, nω � 1 and quantum statistical effects are ignor-
able; hence we get Boltzmann statistics rather than Bose-Einstein statis-
tics.) Again, this is what we obtain from Planck spectrum. Thus, one may
think of blackbody radiation as made of photons when h̄ω � kT and as
made of waves when h̄ω � kT .

After this warm up, let us consider a more complicated situation when
the radiation field is not isolated but interacts with charged particles.

Consider a gas of electrons at temperature Te, interacting with a dis-
tribution of photons with mean energy 〈E〉. Assume that 〈E〉 � mc2 and
kTe � mc2. During the scattering, energy is exchanged between electrons
and photons. We are interested in computing the net energy transfer be-
tween the charged particle and the photons. Obviously, we expect the net
energy transfer 〈ΔE〉 from the photons to the electrons to be positive if the
average energy 〈E〉 of the photons is much larger than the thermal energy
of the electrons; on the other hand, if 〈E〉 � kBTe we expect 〈ΔE〉 to be
negative with the photons getting the energy from the electrons. This is an
interesting situation (which happens to be of considerable astrophysical
importance) which we will analyse from different angles.

I will first show how the result can be obtained by a rather cute trick.
Let the energy transferred from the photons to the electrons be ΔE on the
average. (We shall omit the symbol 〈〉 for simplicity of notation.) Since
E � mc2 and kTe � mc2, we can expand

(
ΔE/mc2

)
in a double Taylor

series in
(
E/mc2

)
and

(
kTe/mc2

)
, retaining upto quadratic order:

ΔE
mc2 = c1 + c2

(
E

mc2

)
+ c3

(
kTe

mc2

)
+ c4

(
E

mc2

)2

+ c5

(
E

mc2

)(
kTe

mc2

)

+c6

(
kTe

mc2

)2

+ · · · . (21.4)
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Just textbook

For this you need a
trick

The coefficients (c1, · · · ,c6) can be fixed by the following arguments:
(i) Since ΔE = 0 for Te = E = 0, we must have c1 = 0.
(ii) Consider next the scattering of a photon with electrons at rest. This

will correspond to Te = 0 and E �= 0. If the scattering angle is θ , the
standard result of Compton scattering tells you that the wavelength of the
photon changes by

Δλ =

(
h

mc

)
(1− cosθ) . (21.5)

Such scattering of a photon, by an electron at rest, is symmetric in the
forward — backward directions and the mean fractional change in the
frequency is (Δω/ω) =−(Δλ/λ ) =−(h̄ω/mc2); so the average energy
transfer to the electrons is ΔE = E2/mc2. This implies that c2 = 0 and
c4 = 1.

(iii) If E = 0 and Te �= 0 the photon has zero energy and nothing should
happen; hence c3 = c6 = 0. So, our expression reduces to

ΔE
mc2 =

(
E

mc2

)2

+ c5

(
E

mc2

)(
kTe

mc2

)2

. (21.6)

(iv) To fix c5, which is the really non-trivial coefficient, we can con-
sider the following thought experiment. Suppose there is a very dilute gas
of photons at the same temperature as the electrons. Then the number
density n(E) of photons is given by the Boltzmann limit of the Planck
distribution:

n(E)dE ∝ E2
(

eβE −1
)−1

dE ∝ E2 exp(−E/kTe)dE . (21.7)

In this case, since the temperatures are the same, we expect the net en-
ergy transfer between the electrons and the photons to vanish. That is, we
demand

0 =

∞∫
0

dE n(E)ΔE , (21.8)

in this situation. Substituting for ΔE and n(E) from Eq. (21.6) and
Eq. (21.7), one can easily show that (4kTe + c5kTe)= 0 or c5 =−4. Hence,
we get the final result

ΔE
E

=
(E −4kTe)

mc2 . (21.9)

One may say that, in a typical collision between an electron and photon,
the electron energy changes by (E2/mc2) and the photon energy changes
by (4kTe/mc2)E.

Let us explore this equation a bit more closely. From Compton scatter-
ing, we know that the average energy lost by the photon per collision is
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How does the
radiation gain
energy

Radiated four-
momentum

Special, but
useful, case

given by

〈Δε〉=−
(

h̄ωi

mec2

)
h̄ωi . (21.10)

Comparing with the result obtained above, we conclude that the mean
fractional energy gained by the photon in one collision must be about
4kBTe/mec2. How do we interpret the generation of these additional pho-
tons, which, — classically —corresponds to radiation of electromagnetic
waves? Why are the charges radiating? This turns out to be a bit more
non-trivial and is related to a radiation drag force felt by the charged par-
ticle in a photon gas. So we first need to obtain the expressions for these.
We will approach the problem step-by-step.

We begin by finding the relativistic analog of the Larmor formula for
the radiation, which is given by (see Eq. (20.18)):

dE =
2
3

q2

c3 a2(t ′)dt , (21.11)

where t ′ is the retarded time. Let us choose an instantaneous rest frame
for the charge in which this non-relativistic formula is valid at t = t ′. Be-
cause of symmetry, the net momentum radiated, dP, will vanish in this
instantaneous rest frame. Clearly this result should be valid even for rel-
ativistic motion, if we can rewrite it in an invariant manner. If ai is the
four-acceleration, then a2/c4 = aiai in the instantaneous rest frame of the
charge. So we can express Eq. (21.11), as well as the condition dP = 0, in
the form

dPk =
2
3

q2

c

(
aiai

)
dxk =

2
3

q2

c

(
aiai

)
ukds , (21.12)

where dPk is the four-momentum radiated by the particle during the
proper time interval ds. Being relativistically invariant, this result is true
for arbitrary velocities.

This radiation leads to a damping force on the particle which, in the
fully relativistic case is given by a four force gi (see Appendix for deriva-
tion):

gi =

(
2q2

3

)[
d2ui

ds2 +uiuk d2uk

ds2

]
=

2
3

q2
[

d2ui

ds2 −ui
(

akak

)]
. (21.13)

These expressions are valid irrespective of the nature of the source which
is accelerating the particle. But, in most contexts, this acceleration will be
produced by an externally specified electromagnetic field. If this electro-
magnetic field is represented by the field tensor Fik (which we assume to
be a constant for the sake of simplicity), then we have:

ai =
( q

m

)
Fi

kuk;
dai

ds
=
( q

m

)2
Fi

kFk
ju

j . (21.14)
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This is neat

Example: Thomson
scattering

Back to the original
problem

Substituting these expressions in Eq. (21.13), and rearranging the terms,
we get

gi =−2
3

(
q2

m

)2 [(
FkaFk j

)
uau jui +FkiFk ju j

]
. (21.15)

This expression can be written in a much nicer form in terms of the
energy-momentum tensor for the electromagnetic field:

4πTbc = FabFa
c −

1
4

FmnFmngbc . (21.16)

Using this expression, we can write

FilFkl = FliFlk = (4π)T i
k +

1
4
δ i

k

(
FabFab

)
. (21.17)

Now we can express gi in terms of T ab alone without Fik appearing explic-
itly. Note that, when we use Eq. (21.17) in Eq. (21.15) the term involving
F2 = FabFab cancels out. Therefore

gi =
8π
3

(
q2

m

)2 [
T i ju j −

(
T abuaub

)
ui
]

=
(σT

c

)[
T i ju j −

(
T abuaub

)
ui
]
, (21.18)

where σT = (8π/3)
(
q2/mc2

)2 is the Thomson cross-section. This is a
nice relation which expresses the radiation reaction force in terms of the
energy-momentum tensor of the electromagnetic field which is accelerat-
ing the charged particle.

As a simple application of this result, consider the humble phenomenon
of Thomson scattering. When an electromagnetic wave hits a charged par-
ticle, it makes the particle oscillate and radiate. The radiation will exert a
damping force on the particle. In a frame in which the charge is at rest,
ui = (1,0,0,0) and gi = (γ fff .vvv,γ fff ) = (0, fff ). From Eq. (21.18), we get:

gi = σT
[
T i0 −T 00ui]= (0,σT un̂nn) , (21.19)

which is a standard result.

For a more non-trivial example, let us come back to the problem of
charged particles interacting with a radiation field with energy density
Urad. Using T ab = Urad dia (1,1/3,1/3,1/3) for an isotropic radiation
bath and ui = (γ,γvvv) we get

T abuaub =Uradγ2
(

1+
1
3

v2
)

; T abub =

(
Uradγ,−1

3
Uradγvvv

)
. (21.20)
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Everything is fine
in photon picture

The real issue

This gives, on using Eq. (21.18),

gi =

(
−4

3
σTUradγ3v2,−4

3
σTUradγ3vvv

)
= (γ fff .vvv,γ fff ) . (21.21)

Comparing, we get

fff =−4
3
σTUradγ2

(vvv
c

)
; − fff .vvv =

4
3
σTUradγ2

(
v2

c2

)
c , (21.22)

where we have re-introduced the c−factor. This result is valid for any
radiation field with energy density Urad. The work done by this drag force
is given by the second relation in Eq. (21.22).

But this should be equal to the net power radiated by the electron! In
other words, this is the addition of energy to the photon field due to the
energy radiated by the electrons. The mean number of photons scattered
per second is Nc = (σT cnrad) = (σT cUrad/h̄ωi) where h̄ωi is the average
energy of the photon defined by h̄ωi = (Urad/nrad). Hence the average
energy gained by the photon in one collision is

〈ΔE〉= 4
3
γ2
(v

c

)2
h̄ωi =

4
3
γ2
(v

c

)2 〈E〉. (21.23)

In the relativistic limit, 〈ΔE/E〉 	 (4/3)γ2 � 1, and this process can be
a source of high energy photons. When v � c, the energy gain by pho-
tons per collision is 〈ΔE/E〉 	 (

4kTe/mec2
)
. This is precisely the result

obtained earlier in Eq. (21.10). So when we think of charged particles in-
teracting with radiation field made of photons, everything works out fine.

But the thermal bath can also be thought of as made up of fluctuating
electromagnetic fields with no mention of photons. How can we account
for the increase in the energy of the thermal bath when it interacts with
the charged particles? Let us see how this comes about.

When a charged particle and a photon scatter off each other with the
photon gaining energy, we do not bat an eyelid; we think of this process to
be somewhat akin to two billiard balls colliding with each other with one
gaining the energy lost by the other. But the addition of energy to a large
bunch of photons is equivalent to the increase in the radiation field when
we look at it in the wave picture. Such radiation can only come from the
acceleration of charged particles. What is the source of acceleration of a
charged particle kept inside a blackbody cavity? It has to be the fluctuating
electromagnetic field when we view everything in the wave perspective.
The fluctuating acceleration of a charged particle in the random electro-
magnetic field of the blackbody cavity has to produce precisely the correct
amount of radiation emission as one would have obtained by thinking ev-
erything through in terms of photons.
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Introduce
fluctuating
EM field

An alternative
derivation

A thermal bath of photons is equivalent to a random superposition of
electromagnetic radiation with 〈E2/4π〉= 〈B2/4π〉= aT 4 at any location.
If the charge is not moving, then there is no net flux hitting the charge and
there is no drag force. Suppose the charge is moving with velocity vvv, in a
frame S in which radiation is isotropic. We will now transform to a frame
S′ in which the charge is at rest. The energy flux in S′ along the x−axis is

T
′0x = γ2

[(
1+

v2

c2

)
T 0x − vx

c

(
T 00 +T xx)]

= −vx

c
γ2 (aT 4)(1+

1
3

)
=−4

3
(
aT 4)(vx

c

)
γ2. (21.24)

We have used the facts T 0x = 0,T 00 = aT 4,T xx = (1/3)aT 4. From
Eq. (21.19), we find that

fff drag =−(4/3)Uradγ2 (vvv/c)∼=−4
3
σT
(
aT 4)(vvv

c

)
, (21.25)

which is precisely the result we obtained earlier!

We can also obtain the power radiated by the charged particles directly
using the notion of just electromagnetic fields. To do this, we will first
re-express the Larmor formula for the power radiated in terms of the elec-
tric and magnetic fields which produce the acceleration. Consider a frame
S in which the particle has a velocity vvv and acceleration aaa. We now make
a Lorentz transformation to a frame S′ in which the charge is instanta-
neously at rest. In this frame:

EEE ′
‖ = EEE‖, EEE ′

⊥ = γ (EEE⊥+ vvv×BBB) , (21.26)

and the acceleration is aaa′ = (q/m)EEE ′. (We have set c = 1 to simplify the
expressions.) Hence the instantaneous power radiated is

2
3

q2a2 =
2
3

q4

m2

[
EEE2
‖+ γ2 (EEE⊥+ vvv×BBB)2

]
=

2
3

q4

m2

[
EEE2
‖+ γ2 (EEE + vvv×BBB−EEE‖

)2
]

=
2
3

q4

m2

[
γ2 (EEE + vvv×BBB)2 − γ2E2

‖v2
]
. (21.27)

In arriving at the last equation we have used the relations EEE ·EEE‖ = E2
‖ and

EEE‖ · (vvv×BBB) = 0. Writing E2
‖v2 = (EEE · vvv)2, we get

ΔE =
2
3

(
q4

m2

)
γ2
[
(EEE + vvv×BBB)2 − (EEE · vvv)2

]
Δ t. (21.28)
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All is well that ends
well

Radiation
reaction force,
non-relativistic case

We next treat the radiation field as equivalent to an electromagnetic field
with 〈(E2/8π)〉 = 〈(B2/8π)〉 = (Urad/2) with EEE and BBB randomly fluctu-
ating around zero mean. In this case, we can again use Eq. (21.28) and
average over EEE and BBB to obtain the net power. Now,

Q ≡ 〈(EEE + vvv×BBB)2 − (EEE · vvv)2〉= 〈E2 − (EEE · vvv)2〉+ 〈(vvv×BBB)2〉 , (21.29)

since 〈EEE · (vvv×BBB)〉= 〈vvv.(BBB×EEE)〉= 0 due to random orientation of vvv with
respect to (EEE ×BBB). Using the relation

〈E2 − (EEE · vvv)2〉= 〈E2〉−E2v2〈cos2 θ〉= E2 (1− v2/3
)

(21.30)

and

〈(vvv×BBB)2〉= 〈vvv · [vvvB2 −BBB(vvv ·BBB)]〉= v2B2 − v2B2/3 = (2/3)β 2B2 ,
(21.31)

we get Q = E2
(
1− v2/3

)
+ (2/3)v2B2. Substituting these results in

Eq. (21.28) we find that(
dE
dt

)
scat

=
σT c
4π

γ2 (4πUR)

(
1+

1
3

v2

c2

)
= σT cγ2

(
1+

1
3

v2

c2

)
UR ,

(21.32)

where we have used the relation 〈E2〉 = 〈B2〉 = 4πUR. The incident ra-
diation energy has been absorbed by the electron. The rate at which this
happens is (

dE
dt

)
abs

= σT cUrad. (21.33)

Hence, the net addition of energy to the photon field is:

P =

(
dE
dt

)
=

(
dE
dt

)
scat

−
(

dE
dt

)
abs

= σT cUrad

[
γ2
(

1+
1
3

v2

c2

)
−1

]

=
4
3
σT cUradγ2

(v
c

)2
. (21.34)

It is remarkable how the various numerical factors play out correctly to
give precisely the same coefficient 4/3 in the final expression!

So whether we treat the thermal radiation field as a bunch of photons
or as fluctuating electromagnetic fields, the final result is consistently the
same.

Appendix: The radiation reaction force gican be determined by using the
criterion that the mean power radiated should be equal to the work done
by the damping force. In the non-relativistic case, this leads to:〈(

ΔE

Δ t

)〉
=−

〈(
2
3

)
q2a2

〉
= 〈 fff · vvv〉 , (21.35)
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Radiation reaction
force, relativistic
case

when averaged over a period of time. Averaging a2 over a time interval T ,
we get:

〈a2〉 = 1
T

∫ T

0
dt a2 =

1
T

∫ T

0
dt (v̇vv.v̇vv)

=
1
T

∫ T

0
dt
[

d
dt

(vvv.v̇vv)− vvv.v̈vv
]
=

1
T
[vvv.v̇vv]T0 −〈vvv.v̈vv〉. (21.36)

The first term vanishes as T → ∞ for any bounded motion, giving
〈a2〉 = −〈vvv.v̈vv〉. Using this, we see that fff damp = (2/3)q2v̈vv in the non-
relativistic case.

To obtain the corresponding relativistic expression for the four-force,
we have to find a four-vector gi which reduces to

(
0,(2/3)q2v̈vv

)
in the

rest frame of the charge. This condition is satisfied by any vector of the
form gi =

(
2q2/3

)[(
d2ui/ds2

)
+Aui

]
where A is to be determined. To

find A, we use the relativistic condition giui = 0 which should hold for
any four-force. This gives A = uk

(
d2uk/ds2

)
. Therefore:

gi =

(
2q2

3

)[
d2ui

ds2 +uiuk d2uk

ds2

]
. (21.37)

The second term can be rewritten using

uk dak

ds
=

d
ds

(
ukak

)
−akak =−akak , (21.38)

since ukak = 0. This gives another expression for gi:

gi =
2
3

q2
[

d2ui

ds2 −ui
(

akak

)]
. (21.39)



It sure has energy
and momentum ...

... but angular
momentum?!

A simple gadget

22Angular Momentum without
Rotation

Electromagnetic fields exert forces on charged particles thereby changing
the energy and momentum of the charged particles. If you now think of
the charged particles and the electromagnetic field as making up a single
closed system, then it follows that the energy and momentum supplied
to the charged particle must have come from the electromagnetic field.
This is indeed true and you must have learnt that the electromagnetic field
possesses energy per unit volume (U) and momentum per unit volume
(PPP) given by

U =
1

8π
(E2 +B2); PPP =

1
4πc

(EEE ×××BBB) . (22.1)

However, what is not stressed adequately in text books is that electro-
magnetic fields — and even pretty simple ones — also possess angular
momentum. Just as the electromagnetic field can exchange its energy and
momentum with charged particles, it can also exchange its angular mo-
mentum with a system of charged particles, often leading to rather sur-
prising results. In this chapter, we shall explore one such example.

One simple configuration [85] in which the exchange of angular mo-
mentum occurs is shown in Fig. 22.1. A plastic disk, located in the x− y
plane, is free to rotate about the vertical z-axis. A thin metallic ring of
radius a, carrying a uniformly distributed charge Q, is embedded on the
disk. Along the z−axis, there is a current-carrying solenoid producing a
magnetic field BBB contributing a total flux Φ . This initial configuration is
completely static with a magnetic field BBB confined within the solenoid and
an electric field EEE produced by the charge located on the ring. Let us sup-
pose that the current source is disconnected, leading the magnetic field to
die down. The change in the magnetic flux will lead to an electric field
which will act tangential to the ring of charge, thereby giving it a torque.
Once the magnetic field has died down, this torque would have resulted
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Ring of total
charge Q

Solenoid with
magnetic flux 

Fig. 22.1: A device to extract electromagnetic angular momentum by transferring it into
rotational motion of charged particles. The circular disk with a ring of charge is free
to rotate about the vertical axis. A coil of wire carrying current provides a solenoidal
magnetic field near the axis in the vertical direction. Surprisingly, this static configu-
ration (with the electric field of a charged ring and the magnetic field of the solenoid)
stores certain amount of angular momentum. If the current in the solenoid is switched
off, this angular momentum will be transfered to the ring of charge making the disk
rotate.

The devil is in the
details

The final angular
momentum is easy

in the disk spinning about the z−axis with a finite angular momentum.
Where did the angular momentum come from?

It is quite obvious that the angular momentum in the initial field is what
appears as the mechanical angular momentum of the rotating disk in the
final stage. What is really interesting is to work this out and explicitly
verify that the angular momentum is conserved (which Ref. [85] doesn’t
do!). I will now describe this calculation as well as some interesting issues
which arise from it (There is large literature on this problem not all of
which is illuminating; one place to start the search is from Refs. [86,87]).

The angular momentum of the final rotating disk can be computed eas-
ily. The rate of change of angular momentum dLLL/dt due to the torque
acting on the ring of charge is along the z−axis, so we only need to com-
pute its magnitude. This is given by:

dL
dt

= aQE =
Q
2π

∮
EEE ·dlll =− Q

2πc
∂Φ
∂ t

. (22.2)

Here, EEE is the tangential electric field generated due to the changing mag-
netic field and the last equality follows from Faraday’s law. Integrating
this equation and noting that the initial angular momentum of the disk and
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Momentum in the
presence of EM field

One way to
define EM angular
momentum

AAA exist where BBB
doesn’t!

Choose a gauge

The initial angular
momentum, as
expected

the final magnetic flux are zero, we get

L =
Q

2πc
Φinitial . (22.3)

It is interesting that the final angular momentum depends only on the total
flux and not on other configurational details.

We now need to show that the initial static electromagnetic configura-
tion had this much of stored angular momentum. We will first do this in
a slightly unconventional manner and then indicate the connection to the
more familiar approach.

Let us recall that the canonical momentum of a charge q located in a
magnetic field is given by ppp− (q/c)AAA where AAA is the vector potential
related to the magnetic field by BBB = ∇×AAA and ppp is the usual kinematic
momentum. This suggests that one can associate with charges located in
a magnetic field, a momentum (q/c)AAA. For a distribution of charge, with
a charge density ρ , the field momentum per unit volume will be (1/c)ρAAA.
Hence, to a charge distribution located in a region of vector potential AAA,
we can attribute an angular momentum

LLLA =
1
c

∫
d3xxxρ(xxx)[xxx×××AAA(((xxx)))] . (22.4)

In our problem, the charge distribution is confined to a ring of radius a
with negligible magnetic field at the location of the charge. But the vector
potential will exist outside the solenoid and the above expression can be
non-zero. To compute this, let us use a cylindrical coordinate system with
(r,θ ,z) as the coordinates. We will choose a gauge in which the vector
potential has only the tangential component; that is, only Aθ is non-zero.
Using ∮

AAA ·dlll =Φ , (22.5)

where Φ is the total magnetic flux, we get 2πrAθ = Φ for a line integral
of A around any circle. Hence Aθ = Φ/(2πr). This can be written in a
nice vectorial form as

AAA =
Φ

2πr2 (ẑzz××× rrr) , (22.6)

where ẑzz is the unit vector in the z-direction. When we substitute this ex-
pression in Eq. (22.4) and calculate the angular momentum, the integral
gets contribution only from a circle of radius a. Further, using the identity,
rrr××× (((ẑzz××× rrr) = ẑzzr2, we get the result that

LLLA =
Q

2πc
Φinitialẑzz , (22.7)

which is exactly the final angular momentum which we computed in
Eq. (22.3). Rather nice!
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The good news ...

... and the bad news

A more conventional
definition

Do the two
definitions give the
same result?

The proof, in
relativistic notation

However, the above elementary derivation, as well as the expression for
electromagnetic angular momentum in Eq. (22.4), raises several intriguing
issues. On the positive side, it makes the vector potential a very tangible
quantity, something which we learnt from relativity and quantum mechan-
ics but could never be clearly demonstrated within the context of classical
electromagnetism. In the process, it also gives a physical meaning to the
field momentum (q/c)AAA which is somewhat mysterious in conventional
approaches. On the flip side, one should note that AAA, by the very defini-
tion, is gauge dependent and one would have preferred a definition of the
electromagnetic angular momentum which is properly gauge invariant.

It is, of course, possible to write down another, more conventional, ex-
pression for the electromagnetic angular momentum. Given the density of
electromagnetic momentum, PPP, we can define the corresponding angular
momentum density as xxx×PPP. Integrating it over all space should give the
angular momentum associated with the electromagnetic field. Since the
momentum density PPP involves only the electric and magnetic fields, the
resulting expressions are automatically gauge invariant. This leads to a
definition of angular momentum given by

LLLEM =
1

4πc

∫
d3xxx [xxx××× (((EEE ×××BBB)))] , (22.8)

which just replaces the momentum density ρAAA/c in Eq. (22.4) by (EEE ×××
BBB/4πc). It is easy to verify that, as momentum densities, these two expres-
sions are unequal in general. But what is relevant, as far as our computa-
tion goes, is the integral over the whole space of these two expressions. If
these two expressions differ by terms which vanish when integrated over
the whole space, then we have an equivalent gauge invariant definition of
field angular momentum.

It turns out that this is indeed the case in any static configuration if we
choose to describe the magnetic field in a gauge with ∇ ·AAA = 0. One can
then show that

1
4π

(EEE ×××BBB)α =
1

4π
(EEE ××× (((∇∇∇×××AAA))))α = ρAAAα +

∂V βα

∂xβ
, (22.9)

where V βα is a complicated second rank tensor built out of field variables.
While one can provide a proof of Eq. (22.9) using vector identities (you
should try it out!), it is a lot faster and neater to use four dimensional
notation and special relativity to get this result.

We begin with the expression for the momentum density of the elec-
tromagnetic field in terms of the stress tensor T ab of the electromagnetic
field. The T 00 component of this tensor is proportional to the energy den-
sity of the electromagnetic field while the T 0α component is proportional
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Final result

to the momentum density Pα . More precisely,

Tα
0 =− 1

4π
(EEE ×××BBB)α =−cPα . (22.10)

On the other hand, the electromagnetic stress tensor can be written in
terms of the four dimensional field tensor Fab in the form Tα

0 =
(1/4π)FαβF0β . We now manipulate this expression using the facts that (i)
the configuration is static and (ii) the vector potential satisfies the gauge
condition ∇ ·AAA = ∂αAα = 0, to prove Eq. (22.9). Using the definition of
the field tensor in terms of the four vector potential, Fi j = ∂iA j −∂iA j, we
can write:

Tα
0 =

1
4π

FαβF0β =
1

4π
(∂αAβ −∂βAα)F0β

=
1

4π
(∂αAβ )F0β −

1
4π

∂β (F0βAα)+Aα ∂
βF0β

4π

=
1

4π
(−∂αAβ ∂βA0)− 1

4π
∂β (F0βAα)+Aα ∂

βF0β

4π
. (22.11)

To arrive at the second line, we have performed an integration by parts and
to obtain the third line, we have used ∂0Aβ = 0 since the configuration is
time independent. We next use the result ∂βF0β =−∇ ·EEE =−4πρ in the
last term and perform another integration by parts in the first term, using
the gauge condition ∇ ·AAA = ∂αAα = 0. This gives

Tα
0 =−ρAα − 1

4π
∂β [A0∂αAβ −Aα∂βA0] . (22.12)

We thus find that:

cPα = ρAα +∂βV βα ; V βα ≡ 1
4π

[A0∂αAβ −Aα∂βA0] , (22.13)

which proves the equivalence between the two expressions for electro-
magnetic momentum density (cPPP and ρAAA), when used in integrals over all
space, provided the second term vanishes sufficiently fast. For the case we
are discussing, this is indeed true.

From the result in Eq. (22.9), it is easy to see that, in our example, we
will get the same result irrespective of whether we use LLLA or LLLEM. This is
because, when we integrate the expressions in Eq. (22.9) over all space,
the term involving V βα can be converted to a surface term at infinity which
does not contribute.



Molecules: stand up
and be counted!

What is common
to: the spread of
mosquitoes, sound
waves and the flow
of money?

23Ubiquitous Random Walk

The first observation of what we now call Brownian motion was probably
made by the Dutch physicist Jan Ingenhauez, the discoverer of photo-
synthesis. In 1785, he put alcohol to good use by sprinkling powdered
charcoal on it and observing it under a microscope. The name Brownian
motion for the random perambulation of the particles comes from Robert
Brown, who published an extensive investigation of similar phenomena
in 1828. This was eventually heralded as evidence for molecular nature
of matter, and figured crucially in the award of the 1926 Nobel Prize in
physics to Jean Perrin for determining the Avogadro number.

The term “random walk”, on the other hand, appears to have been first
coined by Carl Pearson in 1905, the same year in which Einstein published
his paper on Brownian motion. Pearson was interested in providing a sim-
ple model for the spread of mosquito infestation in a forest — which goes
to show, right at the outset, the generality of the process! Pearson’s letter
to Nature was answered by Lord Rayleigh who had solved this problem
earlier in the case of sound waves in heterogeneous material. Independent
of all this, Louis Bachelor was developing the theory of random walks
in his remarkable doctoral thesis La theorie de la speculation published
in 1900. Here, the random walk was suggested as a model for a financial
time series, which has, until recently, helped physicists get Wall Street
jobs (with the consequences we all now know only too well!). This brief
glimpse of history already shows the occurrence of the random walk in
widely different contexts. (An entertaining discussion of history is avail-
able in Refs. [88, 89]; also see Ref. [90].)

Let us begin by reviewing the simplest of all random walks in which
a particle moves from the origin, taking steps of length �, with each step
being in a random direction uncorrelated with the previous one. The dis-
placement of the particle after N steps is given by

xxx =
N

∑
n=1

xxxn , (23.1)
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No limits for
dx/

√
dt

where
|xxxn|= �; 〈xxxn〉= 0; 〈xxxn · xxxm〉= �2δnm . (23.2)

The first equation shows that each step has a constant magnitude. The sec-
ond and third equations denote averaging over a probability distribution
by the symbol 〈...〉 and quantifies the uncorrelated nature of the directions
of the steps. From these, we can immediately obtain two key results of
such a random walk. First, 〈xxx〉= 0. Further, we have

σ2 ≡ 〈xxx2〉=
〈(

N

∑
n=1

xxxn

)2〉
=

∞

∑
n,m=1

〈xxxn · xxxm〉= N�2 . (23.3)

This shows that the key characteristic of the random walk, viz., the root-
mean-square displacement σ grows as

√
N.

We can think of � as Δx, denoting the magnitude of the displacement
between any two consecutive steps. If the time interval between the steps
is Δ t, then σ ∝

√
N suggests that (Δx)2/Δ t remains constant in the con-

tinuum limit. Clearly, the random walk corresponds to a curve without
a definite slope in the continuum limit and, in fact, the continuum limit
needs to be taken with some care [91]. This is one of the many reasons
why random walks are fascinating.

To see how such a continuum limit emerges in this context, we should
generalize the concept of random walk slightly by assuming that the prob-
ability for the particle to take a step given by the vector Δyyy is given by
some function p(Δyyy) with the properties

〈Δyi〉 ≡
∫

dDΔy [Δyi p(Δyyy)] = 0;

〈ΔyiΔy j〉 ≡
∫

dDΔy[ΔyiΔy j p(Δyyy)] = 〈(Δy)2〉δ
i j

D
. (23.4)

where i, j, ...= 1,2, ...D denotes the components of the vector. Let PN(xxx)
be the probability that the net displacement is xxx after N steps. Then, since
the steps are uncorrelated, we have the elementary relation:

PN(xxx) =
∫

dDΔyPN−1(xxx−Δyyy)p(Δyyy) . (23.5)

To obtain the continuum limit, we will assume that a Taylor series expan-
sion of PN−1(xxx−Δyyy) is possible so that we can write (assuming summa-
tion over repeated indices):
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The trick ...

... leading to the
diffusion equation

PN(xxx) ∼=
∫

dDΔy p(Δyyy)
{

PN−1(xxx)−Δyi∂iPN−1(xxx)

+
1
2
ΔyiΔy j∂i∂ jPN−1(xxx)

}

= PN−1(xxx)+
〈(Δy)2〉

2D
∇2PN−1(xxx) , (23.6)

where we have used Eq. (23.4). In the continuum limit, we will denote the
total time which has elapsed since the beginning of random walk by t =
NΔ t and define a continuum probability density by ρ(xxx, t) = ρ(xxx,NΔ t)≡
PN(xxx). Since we can take (∂ρ/∂ t) as the limit [PN(xxx)−PN−1(xxx)]/Δ t
when Δ t → 0, we get from Eq. (23.6), the result:

∂ρ
∂ t

= K∇2ρ , (23.7)

where we have defined a (‘diffusion’) coefficient K ≡ 〈(Δy)2〉/2DΔ t. The
continuum limit exists if we can treat K as a constant when Δ t → 0. This,
clearly, is equivalent to 〈(Δy)2〉/Δ t being finite in the continuum limit as
we indicated earlier. This is quite different from the usual continuum lim-
its we are accustomed to in physics in which the ratio of the differentials of
the same order are replaced by a derivative. This warns us that something
non-trivial is going on.

Note that the final equation we have obtained, of course, is the diffusion
equation which can also be written as (∂ρ/∂ t) = −∇ · JJJ where the cur-
rent JJJ = −K∇ρ arises due to the gradient in the particle density. (In this
form, we can even consider a situation with spatially varying diffusion
coefficient K.) This indicates that diffusive processes in physics can be
modeled at the microscopic level by a random walk of the discrete con-
stituent element. The diffusion equation is also unique in the sense that
it is not invariant under time reversal; diffusion gives you a direction of
time — which is another remarkable feature that arises in the continuum
limit.

The diffusion equation, Eq. (23.7), being a linear equation, can be
solved by Fourier transforming both sides. Denoting the Fourier trans-
form of ρ(xxx, t) by ρ(kkk, t), it is easy to show that ρ(kkk, t) = exp(−Kk2t).
Taking a Fourier transform, we get the fundamental solution to the diffu-
sion equation (which is essentially the Green’s function) to be

ρ(xxx, t) =
e−x2/4Kt

(4πKt)D/2 . (23.8)

This shows how particles located close to the origin at t = 0 spread out in
the course of time. The mean square spread is clearly proportional to Kt
which is the residue of the discrete result σ2 ∝ N.
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Application:
Diffusion in
velocity space

All divergences
arise from incom-
plete physics

The diffusion of a particle need not always take place in the real 3-
dimensional space. An interesting phenomenon which occurs in plasmas
as well as gravitating systems — wherein the long range, inverse square
forces act between particles — involves diffusion in the velocity space. A
simple version of this can be described as follows.

Consider a near homogeneous distribution of gravitationally interact-
ing particles (e.g., stars in a globular cluster). When two stars scatter
off each other with an impact parameter b, each one undergoes a typi-
cal acceleration Gm/b2 acting for a time b/v. In any one such scattering,
a typical star will acquire a “kick” in the velocity space of magnitude
(δv⊥ ≈ Gm/bv), δv⊥ � v. The effect of a large number of such collisions
is to make the star perform a random walk in the velocity space. The net
mean-square-velocity induced by collisions with impact parameters in the
range (b,b+db) in a time interval Δ t is the product of the mean number
of scatterings in time (Δ t) and (δv⊥)2. The former is given by the number
of scatterers in the volume (2πbdb)(vΔ t). Therefore,

〈(δv⊥)2〉= (2πbdb)(vΔ t)n
(

Gm
bv

)2

. (23.9)

where n is the number density of scatterers. The total mean-square trans-
verse velocity due to all stars is found by integrating over b within some
range (b1,b2):

〈(δv⊥)2〉total 	 Δ t
∫ b2

b1

(2πbdb)(vn)
(

G2m2

b2v2

)

=
2πnG2m2

v
Δ t ln

(
b2

b1

)
. (23.10)

We again see the signature of the random walk in 〈δv2
⊥〉 ∝ Δ t. The loga-

rithmic factor shows that we cannot take b1 = 0,b2 = ∞, and need to use
some physical criteria to fix b1 and b2. It is reasonable to take b2 	 R,
the size of the system; as regards b1, notice that the velocity changes per
collision can become comparable to v itself when b 	 bc 	

(
Gm/v2

)
and

our diffusion approximation breaks down. It is, therefore, reasonable to
take b1 	 bc 	

(
Gm/v2

)
. Then (b2/b1)	

(
Rv2/Gm

)
=N

(
Rv2/GM

)	N
for a system in virial equilibrium. From Eq. (23.10), we see that this ef-
fect is important over time-scales (Δ t) which are long enough to make
〈(δv1)

2〉total 	 v2. Using this condition and solving for (Δ t), we get:

(Δ t)	 v3

2πG2m2n lnN
. (23.11)
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You don’t want this
to go on and on

The other side:
dynamical friction

This is the timescale for gravitational relaxation in such systems (or elec-
tromagnetic relaxation in plasmas) and the lnN factor arises due to diffu-
sion in velocity space.

The entire process can be described by a diffusion equation in velocity
space — or so it would seem at first sight. Further thought, however, shows
that if we describe the process by a diffusion equation in velocity space, it
will make the root-mean-square velocities of every particle in the system
increase as

√
t as time goes on, which violates some sacred notions in

physics. (For a description of the curious history behind these discoveries,
see e.g. Ref. [92].) This is one key difference between diffusion in real
space, compared to velocity space, and there must exist another process
which prevents this.

This process is called dynamical friction. To understand this process,
consider a particle (“star”) which moves with a speed V that is signifi-
cantly larger than the root mean square speed of the cloud of stars around
it. In the rest frame of the fast star, on the average, other stars will stream
past it and will be deflected towards it. This will produce a slight den-
sity enhancement of stars behind the fast star. This density enhancement
produces the necessary extra force to reduce the speed V of the star. This
dynamical friction ensures that no runaway disaster occurs in the velocity
space.

If we take both the processes into account, the evolution in the velocity
space is described by an equation which is a variant of what is called the
Fokker-Planck equation. We can describe the diffusion in the velocity (or,
equivalently, momentum) space, that obeys standard conservation laws,
through a source term which is a divergence of a current in the momentum
space. Hence, the evolution of the distribution function will be governed
by an equation of the form

d f
dt

=
∂ f
∂ t

+ vvv.
∂ f
∂xxx

−∇φ .
∂ f
∂vvv

=− ∂Jα

∂ pα
. (23.12)

The form of the current Jα can be determined by considering the elemen-
tary collisional process, and one obtains [102, 103] the result

Jα(���) =
B0

2

∫
d ���′

{
f
∂ f ′

∂�β
− f ′

∂ f
∂�β

}
.

{δαβ
k

− kαkβ
k3

}
; kkk = ���− ���′ ,

(23.13)
where

B0 = 4πG2m5L; L =

b2∫
b1

db
b

= ln
(

b2

b1

)
≈ lnN . (23.14)

In this current in Eq. (23.13), the term proportional to f leads to dynamical
friction while the term proportional to ∂ f/∂ lβ leads to the increase in
the velocity dispersion. The form in Eq. (23.13) is quite elegant and, by
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Fokker-Planck in a
simple case

The solution

inspection, we can conclude that the current vanishes for the Maxwellian
distribution which should arise as the steady state configuration. I will not
bother to derive the above equation for you (if you are interested, look
through the references in Box 23.1) but will illustrate the nature of this
equation using a simpler one.

A simplified version of this equation, which contains the essential fea-
tures for our purpose, is given by

∂ f (v, t)
∂ t

=
∂
∂v

{
σ2

2
∂ f
∂v

+(αv) f
}

. (23.15)

The first term on the right hand side has the standard form of a diffusion
current proportional to the gradient in the velocity space. As time goes
on, this term will cause the mean square velocities of particles to increase
in proportion to t, inducing the ‘random walk’ in the velocity space. Un-
der the effect of this term, all the particles in the system will have their
〈v2〉 increasing without bound. This unphysical situation is avoided by the
presence of the second term (αv f ) which describes the dynamical friction.
The combined effect of the two terms is to drive f to a Maxwellian distri-
bution with an effective temperature (kBT ) = (σ2/α) and (∂ f/∂ t) = 0.
In such a Maxwellian distribution, the gain made in (Δv2) due to diffusion
is exactly balanced by the losses due to dynamical friction. When two par-
ticles scatter, one gains the energy lost by the other; on the average, we
may say that the one which has lost the energy has undergone dynami-
cal friction while the one which gained energy has achieved diffusion to
higher v2. The cumulative effect of such phenomena is described by the
two terms in Eq. (23.15).

The above features can be illustrated by explicitly solving Eq. (23.15).
Suppose we take an initial distribution f (v,0) = δ (v− v0) peaked at a
velocity v0. The solution of Eq. (23.15) with this initial condition is:

f (v, t) =
[

α
πσ2(1− e−2αt)

]1/2

exp
[
−α(v− v0e−αt)2

σ2(1− e−2αt)

]
, (23.16)

which is a Gaussian with the mean 〈v〉 = v0e−αt and dispersion
〈v2〉−〈v〉2 = (σ2/α)(1−e−2αt). At late times (t →∞), the mean velocity
〈v〉 goes to zero while the velocity dispersion becomes (σ2/α). Thus, the
equilibrium configuration is a Maxwellian distribution of velocities with
this particular dispersion, for which the right hand side of Eq. (23.15)
vanishes.

To see the effect of the two terms individually on the initial distribution
f (v,0) = δ (v− v0), we can set α or σ to zero. When α = 0, we get pure
diffusion:

fα=0(v, t) =
(

1
2πσ2t

)1/2

exp
{
− (v− v0)

2

2σ2t

}
. (23.17)
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Nothing happens to the steady velocity v0; but the velocity dispersion
increases in proportion to t representing a random walk in the velocity
space. If, on the other hand, we set σ = 0, then we get

fσ=0(v, t) = δ (v− v0e−αt). (23.18)

Now there is no spreading in velocity space (no diffusion); instead the
friction steadily decreases 〈v〉.

Box 23.1: History: Landau’s derivation of dynamical friction

One of the key results in Chandrasekhar’s book [93] is the derivation
of the collisional relaxation time. He essentially obtains the result in
Eq. (23.11) after devoting about 25 pages (from pages 48 to 73) for
the algebraic derivation which includes a ‘three-dimensional’ picture!
For comparison, the same result had been obtained earlier by James
Jeans [94] in 1929 using about 3 pages (pages 317 to 320) in his book.
The result was doubtless known to many others and — in fact — the
explicit use of lnN in the timescale for soft collisions exists in a 1938
paper of Ambartsumian [95]. Chandrasekhar defends his elaborate
calculation of this previously known result by saying: “Though the
physical ideas were correctly formulated by Jeans .... a completely
rigorous evaluation of the time of relaxation was not available until
recently”. Chandrasekhar does not seem to have been bothered by
the fact that any estimation of time of relaxation will necessarily be
uncertain by factors of order unity both because of the variation of
density — Chandrasekhar assumes a constant density star cluster —
and by the uncertainties in the upper and lower cut-offs inside the
logarithm.

There is, however, a more interesting twist to this tale which illus-
trates one of the rare occasions in which Chandrasekhar completely
missed a key physical effect. As mentioned in the text, if all the stars
in a globular cluster continue random walking in velocity space, it
will violate some sacred principles of physics. It seems that Chan-
drasekhar realized this soon after — but only after — the publica-
tion of his book on stellar dynamics. He addresses this issue and
obtains the expression for dynamical friction as a separate physical
phenomenon in his works published shortly afterwards [96–98].

Curiously enough, the elegant expression in Eq. (23.13), giv-
ing both the dynamical friction and diffusion at one go, was al-
ready known before Chandrasekhar’s work! These results were first
obtained and published — in 1936, about six years before Chan-
drasekhar’s work was published — by Landau [99]. (He was dis-



254 23 Ubiquitous Random Walk

A more general
random walk ...

... which is solvable

cussing Coulomb interactions in a plasma but everything can be triv-
ially translated to gravitational interaction.)

Strangely, the elegance and power of this result was not appre-
ciated, occasionally even by plasma physicists. A detailed discus-
sion of this approach [100] by Rosenbluth et al in 1957 cites Chan-
drasekhar’s work but not Landau’s though they have a citation to Co-
hen et al. [101] with a comment “A more complete list of references
is given in this...” The paper by Cohen et al. does cite Landau’s pa-
per but it is clear they have not understood the result at all, because
they say that, in Landau’s work, “... the important terms represent-
ing dynamical friction which should appear in the diffusion equation
are set equal to zero as a result of certain approximations”. which is,
of course, incorrect. Landau, in the usual elegant but terse style, has
captured all the essential physics. (A textbook derivation of this result
in the context of plasmas [102] as well as gravitating systems [103]
is now available.)

Returning to the discrete case, we can make another useful generaliza-
tion of Eq. (23.5) by assuming that p(Δyyy) itself depends on N so that the
fundamental equation becomes

PN(xxx) =
∫

dDyPN−1(xxx−Δyyy)pN(Δyyy) . (23.19)

This equation, which is a convolution integral, is also easy to solve in
Fourier space in which the convolution integral becomes a product. If we
denote by PN(kkk) and pN(kkk) the Fourier transforms of PN(xxx) and pN(Δyyy)
respectively, then this equation becomes PN(kkk) = PN−1(kkk)pN(kkk). Iterat-
ing this N times and normalizing the initial probability by assuming the
particle was at the origin, we get:

PN(kkk) =
N

∏
n=1

pn(kkk) . (23.20)

Performing an inverse Fourier transform, we find the solution to our prob-
lem to be

PN(xxx) =
∫ dDk

(2π)D eikkk·xxx
N

∏
n=1

pn(kkk) . (23.21)

Again, it is possible to make some general comments if the individual
probability distributions pn(Δyyy) satisfy some reasonable conditions. Con-
sider, for simplicity, that pn(Δyyy) is peaked at the origin and dies down
smoothly and monotonically for large |Δyyy|. Then, its Fourier transform
will also be peaked around the origin in k−space and will die down for
large values of |kkk|. Further, because the probability is normalized, we have
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A simple trick ...

... to prove the
central limit
theorem!

When the central
limit theorem fails

the condition pn(kkk = 0) = 1. When we take a product of N such functions,
the resulting function will again have the value unity at the origin. But as
we go away from the origin, we are taking the product of N numbers each
of which is less than unity. Clearly, when N → ∞, the product of pn(kkk)
will have significant support only close to the origin.

The non-trivial assumption we will now make is that pn(kkk) has a
smooth curvature at the origin of the Fourier space and is not ‘cuspy’.
Then, near the origin in Fourier space, we can approximate

pn(kkk)	 1− 1
2
α2

n k2 	 e−(1/2)α2
n k2

, (23.22)

with some constant αn. The product then becomes:

N

∏
n=1

pn(kkk) = exp−1
2

k2
N

∑
n=1

α2
n ≡ exp−N

2
σ2k2 , (23.23)

where we have defined
σ2 =

1
N

N

∑
n=1

α2
n . (23.24)

In this limit, the final Fourier transform in Eq. (23.21) will give a Gaussian
in x with 〈x2〉 ∝ N.

An observant reader would have noticed that we have essentially
proved a variant of the central limit theorem for the sum (xxx1 + xxx2 + ...xxxN)
of N independently distributed random variables, each having its own
probability distribution pn(xxxn). In fact, the joint probability for these vari-
ables to be in some given interval is given by the product, pn(xxxn)dDxxxn
over all n = 1,2, ...N. The probability for their sum to be xxx is given by

PN(xxx) =
∫ N

∏
n=1

pn(xxxn)dDxxxnδD
(
xxx−∑xxxn

)
, (23.25)

where the Dirac delta function ensures that the sum of the random vari-
ables is xxx. We write the Dirac delta function in Fourier space to obtain

PN(xxx) =
∫ dDk

(2π)D eikkk·xxx
N

∏
n=1

∫
dDxxxn pn(xxxn)e−ikkk·xxxn

=
∫ dDk

(2π)D eikkk·xxx
N

∏
n=1

pn(kkk) , (23.26)

which is identical to the result we obtained earlier in Eq. (23.21).

A classic example in which our analysis (and the central limit theorem)
fails is given by the case in which each of the probability distributions
pn(Δyyy) is given by a Lorentzian

pn(Δyyy) =
(β/π)

(Δy)2 +β 2 . (23.27)
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More is not different

Random walk on a
lattice

The Fourier transform now gives pn(kkk) = exp(−β |kkk|). Clearly the ap-
proximation in Eq. (23.22) fails for this function, since it is ‘cuspy’ due
to a linear term in |kkk| near the origin. We can, of course, carry out the
analysis in Eq. (23.21) to get

PN(xxx) =
∫ dDk

(2π)D eikkk·xxxe−Nβ |kkk| =
(Nβ/π)

|xxx|2 +(N2β 2)
. (23.28)

We have the result that the probability distribution for the final displace-
ment is identical to the probability distribution of individual steps when
the latter is a Lorentzian — except for the (expected) scaling of the
width.

The main reason for the central limit theorem to fail in this case is that
the Lorentzian distribution has a diverging second moment. You should
remember this the next time you think of the full width at half maximum
of a Lorentzian as “similar to” the width of a Gaussian! There are physical
situations, (e.g., one called anomalous diffusion), which can be modeled
along these lines. They are characterized by random walks in which every
once in a while the particle takes a large step because of the slow decrease
in the probability p(Δyyy).

Quite often, one also considers the random walk on a lattice of specific
shape, the simplest being the D-dimensional cube. Here, the particle hops
from one site of the lattice to a nearby site along any one of the axes with
the lattice spacing taken to be unity for simplicity. In this case, the Fourier
integrals in Eq. (23.21) become Fourier series, and we get:

PN(xxx) =
∫ π

−π
dDk
(2π)D [cos(kkk · xxx)]

N

∏
n=1

pn(kkk) , (23.29)

where all the integrals are in the range (−π,π) and xxx is a vector with
integer valued components. If pn(kkk) is independent of n, and the hops in
all directions from any site are equally likely, then p(kkk) = (1/D)(cosk1 +
cosk2 + · · ·coskD) and we get:

PN(xxx) =
∫ π

−π
dDk
(2π)D [cos(kkk · xxx)]

(
1
D

D

∑
j=1

cosk j

)N

. (23.30)

As a cross check, we can reproduce the standard result for the one
dimensional lattice using Eq. (23.30). In this case x = J, with J being a
positive or negative integer. After N steps when the particle has taken nL
steps to the left of origin and nR steps to the right, we have nL+nR =N and
nR −nL = J. Solving this, we get nR = (1/2)(N + J), nL = (1/2)(N − J).
The probability that out of N steps nL was to the left and nR was to the
right is the same as getting, say, nL heads while tossing N coins, and is
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given by:

PN(J) =
1

2N
NCnL =

1
2N

N!
((1/2)(N + J))!((1/2)(N − J))!

. (23.31)

You can amuse yourself by proving that the same expression is also given
by the integral in Eq. (23.30) for D = 1,

PN(J) =
∫ π

−π
dk1

(2π)
[cos(k1J)](cosk1)

N , (23.32)

as it should. The result in Eq. (23.30) will be useful in the next chap-
ter when we address some interesting dimension-dependent properties of
random walks (and an unexpected connection with electrical networks!).



Surprise, surprise:
3 �= 2 �= 1

Another perspective

24More on Random Walks: Circuits
and a Tired Drunkard

The general formula for the probability PN(xxx) for a particle to be found at
position xxx after N steps, obtained in the last chapter [see Eq. (23.30)], de-
pends on the dimension of space D in which the random walk takes place.
(It also depends on the geometry of the lattice, but for simplicity, we will
only consider cubic lattice in D-dimensions.) Do the crucial features of
random walks depend on the dimension D? At first sight, one might have
thought that the random walk in, say, D = 1,2,3 will behave in essentially
the same manner. Curiously enough, this is not the case!

The dimensional dependence of the the random walk can be illus-
trated [104] by studying the phenomenon known as recurrence. Recur-
rence refers to the probability for the the random walking particle to come
back to the origin — where it started from — in the course of its peram-
bulation, when we wait for infinite time. Let un denote the probability that
a particle returns to the origin on the n th step and let R be the expected
number of times it returns to the origin. Clearly,

R =
∞

∑
n=0

un . (24.1)

We can now distinguish between two different scenarios. If the series in
Eq. (24.1) diverges, then the mean number of returns to the origin is in-
finite and we say that the the random walk is recurrent. If the series is
convergent, leading to a finite R, then we say that the the random walk is
transient.

This idea is reinforced by the following alternative interpretation of R.
Suppose u is the probability for the particle to return to the origin. Then,
the normalized probability for it to return exactly k times is uk(1−u). The
mean number of returns to the origin is, therefore,

R =
∞

∑
k=1

k uk−1(1−u) = (1−u)−1 . (24.2)
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A drunken man
will definitely come
home, in the long
run, but a drunken
bird may or may
not!

Obviously, if R =∞, then u = 1, showing that the the random walker will
definitely return to the origin. But if R <∞, then u< 1 and it is not certain
that the particle will ever come back home.

Let us compute un and R for random walks in D = 1,2,3 dimensions
with the lattice spacing set to unity for simplicity. From Eq. (23.30), set-
ting xxx = 0, we have:

un =
∫ π

−π
dDk
(2π)D

(
1
D

D

∑
j=1

cosk j

)n

. (24.3)

Doing the sum in Eq. (24.1) we get

R =
∞

∑
n=0

un =
∫ π

−π
dDk
(2π)D

(
1− 1

D

D

∑
j=1

cosk j

)−1

. (24.4)

We want to ascertain whether this integral is finite or divergent. Clearly,
the divergence, if any, can only arise due to its behaviour near the origin
in k-space. Using the Taylor series expansion of the cosine function, we
see that, near the origin, we have the behaviour:

R ≈ 2D
∫

k≈0

dk1dk2...dkD

(2π)D

(
k2

1 + k2
2....k

2
D
)−1 ∝

2D
(2π)D

∫
k≈0

kD−1dk
k2 .

(24.5)
The dimension dependence is now obvious. In D = 1,2 the integral is
divergent and R = ∞; so we conclude that the random walk in D = 1,2
is recurrent and the particle will definitely return to the origin if it walks
forever. But in D = 3, R is finite and the walk is non-recurrent. There is
finite probability that the particle will come back to the origin but there is
also a finite probability that it will not.

The mean number of recurrences in D= 3 is given by — what is known
as — the Watson integral

R =
3

(2π)3

∫ π

−π
dk1

∫ π

−π
dk2

∫ π

−π
dk3 [3− (cosk1 + cosk2 + cosk3)]

−1 ,

(24.6)

which is notoriously difficult to evaluate analytically. Since the answer
happens to be

R =

√
6

32π3 Γ
(

1
24

)
Γ
(

5
24

)
Γ
(

7
24

)
Γ
(

11
24

)
, (24.7)

you anyway need to look it up in a table so one might as well do
the integral numerically (which is trivial in Mathematica, say) and get
R ≈ 1.5164, giving the return probability u ≈ 0.3405. This integral was
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D = 1 is easy

D = 2 is just the
square of D = 1!

No, it doesn’t work
for D = 3!

first evaluated by Watson [105] in terms of elliptic integrals and a “sim-
pler” result was obtained by Glasser and Zucker later on [106].

In the case of D = 1 or 2, it is also easy to obtain un explicitly by using
a combinatorics argument. In 1-dimension, the particle can return to the
origin only if it has taken an even number of steps, half to the right and
half to the left. The probability for this is clearly

u2n =
2nCn

1
22n . (24.8)

For sufficiently large n, we can use Stirling’s approximation for factorials
(n! ≈√

2πne−nnn) to get u2n ≈ 1/
√
πn. The series in Eq. (24.1) involves

the asymptotic sum which is divergent:

m =∑
n

u2n ≈∑
n

1√
πn

= ∞ . (24.9)

Obviously, the 1-dimensional random walk is recurrent.

Interestingly, the result for D = 2 turns out to be just the square of the
result for D = 1. The integral in Eq. (24.3) becomes, for D = 2:

un(xxx) =
1

(2π)D
1
2n

∫ π

−π
dk1

∫ π

−π
dk2 (cosk1 + cosk2)

n . (24.10)

If you now change the variables of integration to (k1+k2) and (k1−k2), it
is easy to show that this integral becomes the product of the two integrals
for the D = 1 case, giving

u2n =

[
1

22n
2nCn

]2

, (24.11)

which is the square of the result for D = 1. Now, the series in Eq. (24.1)
will be dominated asymptotically by

R ≈∑
n

1
πn

= ∞ , (24.12)

thus making the D = 2 random walk recurrent. You might guess at this
stage that in 3-D, the asymptotic series will involve a sum over n−3/2 (and
hence will converge) making the 3-D random walk non-recurrent. This is
partially true and the 3-dimensional series is bounded from above by the
sum over n−3/2. But the 3-dimensional case is not the product of three
1-dimensional cases.

We now turn our attention to another curious result. Summing PN(xxx)
over all N, one can construct the quantity P(xxx) which is the net probability
of reaching a location xxx. Using Eq. (23.30) and doing the geometric sum,
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The real pleasure
of doing physics;
what you thought is
different is the same!

we find this quantity, in D = 2, to be:

P(xxx) =
∫ π

−π

∫ π

−π
dk1dk2

(2π)2 [cos(kkk · xxx)]
(

1− 1
2
(cosk1 + cosk2)

)−1

.

(24.13)
Consider now the expression

R =
1
2
(P(xxx)−P(000))

=
∫ π

−π

∫ π

−π
dk1dk2

8π2
[1− cos(kkk · xxx)]

[1− (cosk1 + cosk2)/2]
. (24.14)

Incredibly enough, this provides the solution to a completely different
problem! Consider a grid of 1 ohm resistors connected between the lattice
sites of an infinite, two-dimensional square lattice. It turns out that R is
the effective resistance between the lattice point xxx and the origin. Let us
see how this comes about by analyzing the grid of resistors.

Let a node xxx in the infinite planar square lattice be denoted by two
integers (m,n) and let a current Im,n be injected at that node. The flow
of current will induce a voltage at each node and, using Kirchoff’s and
Ohm’s laws for the 1 ohm resistors we can write the relation:

Im,n = (Vm,n−Vm+1,n)+(Vm,n−Vm−1,n)+(Vm,n−Vm,n+1)+(Vm,n−Vm,n−1)

= 4Vm,n−Vm+1,n−Vm−1,n−Vm,n+1−Vm,n−1 , (24.15)

where Vm,n is the potential at the node (m,n) due to the current. This equa-
tion can again be solved by introducing the Fourier transform on the dis-
crete lattice. If we write

Im,n =
1

4π2

∫ π

−π

∫ π

−π
dk1 dk2 I(k1,k2)ei(mk1+nk2) (24.16)

Vm,n =
1

4π2

∫ π

−π

∫ π

−π
dk1 dk2 V (k1,k2)ei(mk1+nk2) , (24.17)

then one can obtain from Eq. (24.15) the result in the Fourier space:

I(k1,k2) = 2V (k1,k2) [2− cos(k1)− cos(k2)] . (24.18)

Suppose a current of 1 amp is injected at (0,0), and (-1) amp at (N,M).
Then Im,n = δm,n −δm−M,n−N , leading to

I(k1,k2) = 1− e−i(Mk1+Nk2) , (24.19)

so that Eq. (24.18) gives the voltage to be

V (k1,k2) =
1
2

1− e−i(Mk1+Nk2)

2− cos(k1)− cos(k2)
. (24.20)
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The answer

Clever tricks are fine
but hard work wins
every time!

The equivalent resistance between nodes (0,0) and (M,N) with the a flow
of unit current is just the voltage difference between the nodes:

RM,N = V0,0 −VM,N

=
1

4π2

∫ π

−π

∫ π

−π
dk1 dk2 V (k1,k2)

[
1− ei(Mk1+Nk2)

]

=
1

4π2

∫ π

−π

∫ π

−π
dk1 dk2

1
2
(1− e−i(Mk1+Nk2))(1− ei(Mk1+Nk2))

2− cos(k1)− cos(k2)

=
1

4π2

∫ π

−π

∫ π

−π
dk1 dk2

1− cos(Mk1 +Nk2)

2− cos(k1)− cos(k2)
, (24.21)

which is exactly the same as the integral in Eq. (24.14)!

The infinite grid of square lattice resistors is a classic problem and the
effective resistance between two adjacent nodes is a “trick question” that
is a favourite of examiners. The answer [0.5 ohm] can be found by trivial
superposition but the effective resistance between arbitrary nodes cannot
be obtained by such tricks. In fact, the effective resistance between two
diagonal nodes of the basic square — the (0,0) and (1,1), say — is given
by the integral

R1,1 =
1

4π2

∫ π

−π

∫ π

−π
dk1 dk2

1− cos(k1 + k2)

2− cos(k1)− cos(k2)

=
1
π2

∫ π

0
dk1

∫ π

0
dk2

1− cos(k1)cos(k2)

2− cos(k1)− cos(k2)
. (24.22)

The second equality is obtained by noting that the denominator is an even
function and hence only the even part of cos(k1 + k2) needs to be kept in
the numerator. Once the entire integral is an even function, we can change
the limits to 0 and π and multiply by 4. The resulting integral is fairly
straightforward but a bit tedious and can be done as follows. You split it
as two integrals and use the standard results:∫ π

0
dv

1
[2− cos(u)]− cos(v)

=
π√

[2− cos(u)]2 −1
, (24.23)

and

∫ π

0
dv

cos(v)
[2− cos(u)]− cos(v)

= π

⎡
⎣ 2− cos(u)√

[2− cos(u)]2 −1
−1

⎤
⎦ , (24.24)

to evaluate the integral over, say, k2. After some simplification, this re-
duces the integral to the form:

R1,1 =
1
π

∫ π

0
dk1

[1− cos(k1)]
2√

[2− cos(k1)]
2 −1

. (24.25)
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The reason why

Surely, any drunkard
will get tired as he
walks?

Substituting x = 1− cosk1, this integral reduces to:

R1,1 =
1
π

∫ 2

0
dx

x√
4− x2

=
2
π
. (24.26)

Clearly, the equivalent resistance between two diagonal lattice points
of the infinite grid is a transcendental number involving π . (Next time
someone lectures you on the power of clever arguments, ask her to get
Eq. (24.26) by clever arguments!)

But why does this work ? What is the correspondence between the ran-
dom walk on a lattice and resistor networks ? There are different levels
of sophistication at which one can answer this question. There is a large
literature on this subject and an entire book [107] dealing with this subject
exists. The mathematical reason has to do with the fact that both the ran-
dom walk probability to visit a node and the voltage on a node (which does
not have any current injected or removed) are harmonic functions. These
are functions whose value at any given node is given by the average of
the value of the function on the adjacent lattice sites. This is obvious in
the case of the random walk because a particle which reaches the node
(m,n) must have hopped to that node with equal probability from one of
the neighbouring nodes (m±1,n±1). In the case of the resistor network,
the same result is obtained from Eq. (24.15) when Imn = 0. If you now
inject the voltages 1 and 0 at two specific nodes A and B, then the voltage
at any other node X can be interpreted as the probability that a random
walker starting at X will get to A before B. One can then use this inter-
pretation to make a formal connection between voltage distribution in an
electric network and a random walk problem. The interested reader can
find more in the book [107] referred above.

We now go back to the random walk in the continuum for which we had
obtained the result in the last chapter, which, specialized to one dimension,
is given by:

PN(x) =
∫ ∞

−∞
dk
(2π)

eikx
N

∏
n=1

pn(k) . (24.27)

We now consider a situation in which the steps are random and uncor-
related but their lengths are decreasing monotonically. In particular, we
will assume that each step length is a fraction λ of the previous one, with
λ < 1, and the first step is of unit length. It is clear that PN(x) is now given
by

PN(x) =
∫ ∞

−∞
dk
(2π)

eikx
N

∏
n=1

cos(kλ n) . (24.28)

We can now study the limit of N → ∞ and ask how the probability
P∞(x,λ ) ≡ Pλ (x) (with a slight change in notation) is distributed. (This
interesting topic does not seems to have been explored in sufficient detail.
A good discussion is available in ref. [108, 109].)



24 More on Random Walks: Circuits and a Tired Drunkard 265

Cantor set ?! Where
does that spring
from?

Maths trick

Another insight into
the result

This probability distribution has very beautiful and unexpected fea-
tures. To begin with, when λ is less than (1/2), the support of the function
Pλ (x) (i.e., the range of x for which Pλ (x) is non-zero) is a Cantor set! On
the other hand, when (1/2) ≤ λ < 1, there is a countably infinite set of
λ values for which Pλ (x) is singular, with it being smooth for almost all
other values of λ . The most interesting case occurs when λ takes the value
of the golden ratio, λ = g ≡ (

√
5−1)/2. This Pg(x) is riddled with singu-

larities but shows a remarkable self-similar behaviour. I will now describe
some of these features.

Let us first consider some cases for which one can obtain simple an-
alytic results. Take, for example, the case of λ = 1/2 which is on the
borderline between the two behaviours. In this case, the relevant infinite
product is given by:

∞

∏
n=1

cos
k
2n =

sink
k

. (24.29)

(This is a cute result which you can prove as follows: Write

cos
k
2n =

1
2

sin(k/2n−1)

sin(k/2n)
, (24.30)

take a product of N terms canceling out the sines and then take the limit
N → ∞.) Since the Fourier transform of (sink/k) is just a uniform distri-
bution, we get the tantalizing result that P(x) is just a uniform distribution
in the interval (−1,1) and zero elsewhere !

Similar methods also work for λ = 2−1/2,2−1/4... etc. For example,
when λ = 2−1/2, the infinite product is

∞

∏
n=1

cos
k

2n/2 =

(
sink

k

)(
sin

√
2k√

2k

)
. (24.31)

The Fourier transform of this involves a convolution of two rectangular
distributions and is easily seen to be a triangular probability distribution.
For the case of λ = 2−1/m, the relevant product again can be evaluated in a
similar manner and the distribution will have continuous derivatives up to
order (m−1) while the mth derivative will be discontinuous at 2m points.
Clearly as m → ∞, the distribution becomes more and more smooth and
approaches the Gaussian limit of the standard random walk.

There is a clever way of understanding the end point distribution for
random walks in which the step length varies as 2−n or 3−n. In the first
case, the final resting place for our tired drunkard is

S =
∞

∑
n=1

an2−n , (24.32)
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Cantor set from
base-3

A useful recursion

where an is a random variable taking the values ±1 with equal probability.
From this, it is easy to see that

S+1 =
∞

∑
n=1

an2−n +
∞

∑
n=1

2−n . (24.33)

So
1
2
(S+1) =

∞

∑
n=1

1
2
(an +1)2−n =

∞

∑
n=1

ωn2−n , (24.34)

where ωn takes the values 0 or 1 with equal probability. We now notice
that this is just the expression for a number in the interval [0,1] in base
2 with ωn denoting the digits 0 or 1 in the binary expansion. Hence the
probability distribution for (1/2)(S+ 1) is uniform in the interval [0,1].
It follows that the probability distribution for S is uniform in the interval
[−1,+1].

A similar trick works when the step size falls as 3−n. In this case, we
have the relation:

S =
∞

∑
n=1

an3−n, an ∈ {−1,1}; S+
1
2
=

∞

∑
n=1

tn3−n, tn ∈ {0,2} .

(24.35)

We now see that S+(1/2) is given by the representation of a number in
the interval [0,1] written in base 3 but has only the digits 0 and 2 appearing
in it. This is actually the Cantor set. Therefore, S is distributed over the
Cantor set constructed from the interval [−(1/2),(1/2)] by removing the
middle term.

Let us next try to understand why we get something as strange as a
Cantor set when λ < 1/2. One way of doing this is as follows. We first
note that one can think of the geometric random walk as a random map
given by the equation

x′ =±1+λx , (24.36)

which describes how the position of the particle changes in a single step.
This is obvious if you substitute x′ for x on the right hand side and iterate.
You will find that the map is equivalent, after infinite steps, to the random
sum

x =∑
n
εnλ n; εn =±1 . (24.37)

Further, we note that our random walk problem satisfies a simple re-
cursion relation. If Pλ (x,N) is the probability to be at location x after N
steps, then it is obvious that

Pλ (x,N) =
1
2

[
Pλ

(
x−1
λ

, N −1
)
+Pλ

(
x+1
λ

, N −1
)]

. (24.38)
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Iterate to Cantor set

Difficult, not com-
pletely solved

Since everything converges for λ < 1/2, we can take the limit of N → ∞
in this equation to obtain

Pλ (x) =
1
2

[
Pλ

(
x−1
λ

)
+Pλ

(
x+1
λ

)]
. (24.39)

If we now define the probability measure Mλ (a,b) for x to be found in the
interval (a,b) by the integral:

Mλ (a,b) =
∫ b

a
dxPλ (x) , (24.40)

then we get the corresponding recursion relation to be:

2Mλ (a,b) = Mλ

(
a−1
λ

,
b−1
λ

)
+Mλ

(
a+1
λ

,
b+1
λ

)
. (24.41)

Using Mλ (a,b) has the advantage that it smoothens out the singulari-
ties in Pλ (x). It is obvious from Eq. (24.41) that the support of Mλ lies in
the interval [−xmax,xmax] with xmax = (1−λ )−1. When λ < 1/2, our map
in Eq. (24.36) transforms this interval to the union of two non-overlapping
intervals given by[

− 1
(1−λ )

,
(1−2λ )
(1−λ )

]
,

[
− 1−2λ
(1−λ )

,
1

(1−λ )

]
. (24.42)

If we use the map in Eq. (24.36) again to either of these sub-intervals,
they, in turn, get mapped into further non-overlapping sub-intervals. If we
continue these iterations an infinite number of times, we obtain the final
support for Mλ which is clearly a Cantor set!

A more intuitive interpretation of this bifurcation can be provided
along the following lines. Suppose the first step in the random walk is
to the right. So, the maximum displacement of the subsequent walk is
λ/(1−λ ). Therefore the end point of the walk must necessarily lie in the
region [

1− λ
1−λ

, 1+
λ

1−λ

]
. (24.43)

We note that the left edge of this region is positive when λ < 1/2; so the
support of Pλ (x) has got divided into two non-overlapping regions just
after one step. Clearly, the same kind of bifurcation occurs at each step
finally leading to a Cantor set.

What about the singular behaviour which arises when λ > 1/2? This
result, in contrast, is extraordinarily hard to analyse. But one can quali-
tatively see why singular behaviour might arise for certain special values
of λ (which, by no means, is exhaustive). Consider the subset of λ values
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The Golden Walk

which satisfies the equation

1−
N

∑
n=1

λ n = 0 , (24.44)

which can be viewed as a random walk with the first step of unit length to
the right, followed by N steps to the left, such that we end up at the origin.
By solving the polynomial equation for N = 2,3,4..., we get the values

λ =

{
1
2
(
√

5−1), 0.544, 0.519, ....
}

, (24.45)

where the first entry is the inverse of the golden ratio g ∼= 0.618. This
positional degeneracy of returning to the origin (in which the points are
reached by different random walks with same number of steps) is the basic
reason for the singular behaviour of Pλ (x).

As we said before, the largest of these values λ = g, which is the in-
verse of the golden ratio, has very special properties. It has a self-similar
structure because of which the probability distribution in the interval
J0 ≡ [−g,g] reproduces the full distribution if we rescale the length by
a factor g−3 and the probability by a factor 3. It turns out that these results
arise because this probability distribution has an infinite number of sym-
metries underlying such a distribution but this is way too complicated for
us to discuss here.



The general problem

Standard phases

25Gravitational Instability of the
Isothermal Sphere

A generic problem related to the establishment of thermodynamic equi-
librium can be stated as follows: Consider a large number (N) of particles,
interacting through a two-body potential U(xxx− yyy) and confined in a re-
gion of volume V . We start off the particles with a generic set of initial
positions and velocities and let them interact (“collide”) with each other
as well as with the boundary of the volume V . We are interested in the
very late time behaviour of such a system. In particular, we are often in-
terested in the kind of equilibrium configuration to which such a system
might evolve into at sufficiently late times.

The result will clearly depend on the nature of the interaction, specified
by U(xxx− yyy) as well as the other parameters. If U(xxx− yyy) is a short range
potential representing intermolecular forces and if E is sufficiently high,
then the system will relax towards a Maxwellian distribution of velocities
and a nearly uniform density in space. The velocity distribution will have
characteristic temperature T 	 2E/3N and we are assuming that this T is
higher than the ‘boiling point’ of the ‘liquid’ made of these particles. If
not, the eventual equilibrium state will be a mixture of matter in the liquid
and vapour state. (Note that we use units with kB = 1 throughout.) All this
is part of standard lore in statistical mechanics.

What happens if U(xxx−yyy) is due to gravitational interaction of the par-
ticles? What are the different phases in which matter can exist in such a
case ? In this chapter, we will discuss some of the peculiar effects that
arise in this context. Let us begin by recalling some details of the standard
statistical mechanics applied to systems with short range interactions.

In the study of laboratory systems involving short range interaction be-
tween constituent particles, a central quantity which we use is the entropy
functional S(E,V ) that gives the entropy of the system as a function of
energy and volume. This, in turn, is related to the density of states of the
system g(E) by S(E) = lng(E) with

g(E)≡ dΓ (E)
dE

; Γ (E)≡
∫

d pdqθ [E −H(p,q)] , (25.1)
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Ideal gas: quick
recap

canonical �=
microcanonical!

where H(p,q) is the Hamiltonian and θ(z) is the Heaviside function with
θ(z) = 1 for z ≥ 0 and zero otherwise. (We will suppress exhibiting the
explicit dependence of various quantities on the volume V when it is not
relevant.) In this microcanonical description of the system, the tempera-
ture and the pressure can be obtained by

T (E) =
(
∂S
∂E

)−1

; P = T
(
∂S
∂V

)
, (25.2)

which shows that the relation between temperature and energy can be de-
termined once we know the Hamiltonian H(p,q) of the system. For ex-
ample, an ideal gas of N particles with H ∝ ∑ p2

i will lead to the familiar
relations

Γ ∼V NE3N/2 ∼ g(E); T (E) = (2E/3N); P/T = N/V , (25.3)

when N � 1.

Quite often one uses the equivalent canonical description based on the
partition function Z(T ) given by the Laplace transform of the density of
states

Z(T ) =
∫

dEg(E)exp[−βE] =
∫

d pdqexp[−βH(p,q)] , (25.4)

where β = 1/T . In this case, one determines the (mean) energy and pres-
sure by the relations

Ē =−(∂ lnZ/∂β ); P̄ = T (∂ lnZ/∂V ) . (25.5)

For systems which obey extensivity of energy, (viz., when total energy
of the system is the sum of its parts to a high degree of accuracy) the
canonical and microcanonical descriptions will lead to the same physical
quantities to the accuracy O(lnN/N) where N is the number of degrees
of freedom of the system.

Let us now consider what happens in self-gravitating systems [110].
The first casualty is the equivalence between canonical and microcanon-
ical descriptions which fails for systems with gravitational interaction
mainly because energy is not an extensive parameter for such systems
(see e.g., [111]). If a large gravitating system is divided into two parts the
total energy cannot be expressed as the sum of the energies of the two
parts; the (gravitational) interaction energy between the parts of the sys-
tem makes a significant contribution to the total energy due to the long
range nature of gravity. Hence the fundamental description of gravitat-
ing systems has to be based on microcanonical ensemble and any use of
canonical ensemble (in some occasions) needs to be justified by specific
physical considerations.
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In canonical
ensemble CV > 0,
while gravity makes
CV < 0

Two physical
cut-offs

Many phases of
gravitating systems

This inequivalence of the two ensembles should also be obvious from
the fact that systems in canonical ensemble cannot exhibit negative spe-
cific heat while self-gravitating systems often do. The first result is obvi-
ous from Eq. (21.2) which tells us that the specific heat CV for a system in
canonical ensemble is given by

CV ≡ ∂ Ē
∂T

=−β 2 ∂ Ē
∂β

= β 2(ΔE)2 > 0 , (25.6)

The second result follows from the fact that, for gravitating systems in
steady state, virial theorem gives 2K +U = 0, where K is the kinetic en-
ergy and U is the potential energy. This implies E =−K where E =K+U
is the total energy. Since the temperature is proportional to the kinetic en-
ergy of random motion K, it follows that gravitating systems in steady
state, obeying virial theorem, have negative specific heat. Obviously, one
needs to be careful in using standard results from statistical mechanics of
laboratory systems to describe gravitating systems.

The sensible — though not always practical — thing to do is to use
the most basic of the ensembles, viz. the microcanonical ensemble to de-
scribe the gravitating systems. To do this, we need to evaluate the den-
sity of states in Eq. (25.1). This integral will diverge in the absence of
two relevant cut-offs. First is the cut-off at large distances which is re-
quired to confine high energy particles from moving to large distances.
This, of course, is not special to self-gravitating systems; even an ideal
gas of particles will have a divergent density of states if it is not confined
by a box of volume V . The second cut-off is at short distances to prevent
particles from approaching each other arbitrarily closely thereby releasing
large amount of gravitational potential energy, −Gm2/r, as r → 0. Once
again, such a situation arises even in the case of plasmas in which quan-
tum mechanical considerations will provide an effective short distance
cut-off. For gravitating systems relevant to astrophysics there is usually
some other physical process, say, arising from the finite size of the self-
gravitating objects, which will provide this cut-off.

Given a large distance cut-off R and short distance cut-off a one can,
in principle, compute the density of states and the thermodynamic be-
haviour of such a system. The two cut-offs define two natural energy
scales E1 =−Gm2/a and E2 =−Gm2/R with a � R. On the other hand,
the application of virial theorem to such a system will lead to a relation of
the form

2K +U = 3PV +U0 , (25.7)

where K is the kinetic energy of the particles, U is the gravitational poten-
tial energy due to standard (−r−1) potential, P is the pressure exerted by
the particles on the confining volume and U0 is the correction to the virial
due to the short distance cut-off. Broadly speaking, the different phases of
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Physical kinetics

the gravitating systems can be related [111] to the different ways in which
this condition is satisfied:

(a) When the energy of the system is such that E � E2, gravity is
irrelevant and the system behaves like a gas confined by a container. In this
high temperature phase with positive specific heat Eq. (25.7) is satisfied
with 2K ≈ 3PV and the other two terms are sub-dominant; i.e., U � K
and U0 � 3PV .

(b) When E1 � E � E2, the system is unaffected either by the con-
fining box or by the short distance cut-off. In this phase with nega-
tive specific heat, it is dominated entirely by gravity and Eq. (25.7) is
satisfied by 2K +U ≈ 0 with the other two terms being sub-dominant
(U0 � U, 3PV � U). Since canonical ensemble cannot lead to negative
specific heat, the description in canonical and microcanonical ensembles
differ drastically in this regime. In canonical ensemble, the negative spe-
cific heat region is replaced by a rapid phase transition.

(c) As we approach lower energies (E →E1) the hard core nature of the
particles begins to be felt and the gravity is resisted by the other physical
processes. This will lead to a low temperature hard core condensate in
which Eq. (25.7) is satisfied by U ≈ U0 with the other two terms being
sub-dominant (2K �U, 3PV �U0).

The existence of negative specific heat phase is characteristic of the
inherent instability of self-gravitating system. As the system evolves, it
has a tendency to form a centrally condensed core with U ≈U0 releasing
large amount of energy which puts the remaining part of the system into
a high temperature phase that will exist as a halo around the core. The
particles in this halo will be bouncing off the walls of the container in the
form of a high temperature gas with a cold core existing as a centrally
condensed body.

The above description should convince you that the statistical mechan-
ics of self gravitating systems is quite complex and it is not easy to make
analytical progress with microcanonical ensemble. The next best thing is
to use an approximation called the mean-field theory. I will now describe
this approach in the context of self-gravitating systems.

Consider a system described by a distribution function f (xxx, ppp, t) such
that f d3xxxd3 ppp denotes the total mass in a small phase space volume. We as-
sume that the evolution of the distribution function is given by some equa-
tion (usually called the Boltzmann equation) of the form d f/dt = C( f ).
The term C( f ) on the right hand side describes the effect of collisions
between the particles in the system. While the precise form of C( f ) may
be complicated, it is usually assumed that the collisional evolution of f ,
driven by C( f ), satisfies two reasonable conditions: (a) The total mass
and energy of the system are conserved and (b) the mean field entropy,



25 Gravitational Instability of the Isothermal Sphere 273

The equilibrium
density distribution

Differential is easier
than Integral, as
equations go

defined by,

S =−
∫

f ln f d3xxxd3 ppp , (25.8)

does not decrease (and in general increases). If you are unfamiliar with
this expression, here is a recap: In the standard derivation of the Boltz-
mann distribution, one extremises the function S =−∑ni lnni of the occu-
pation numbers ni, subject to the constraints, on total energy and number.
In the continuum limit one works with f rather than ni and the summation
over i becomes an integral over the phase space, leading to Eq. (25.8). For
any such system, we can obtain the equilibrium form of f by extremising
the entropy while keeping the total energy and mass constant using two
Lagrange multipliers. This is a standard exercise in statistical mechanics
and the resulting distribution function is the usual Boltzmann distribution
governed by:

f (xxx,vvv) ∝ exp
[
−β

(
1
2

v2 +φ
)]

; φ(xxx) =
∫

d3yyyU(xxx,yyy)ρ(yyy) . (25.9)

Integrating over velocities, we get the closed system of integral equations
for the density distribution:

ρ(xxx) =
∫

d3 vvv f = Aexp(−βφ(xxx)); φ(xxx) =
∫

d3yyyU(xxx,yyy)ρ(yyy) .
(25.10)

The final result is quite understandable: It is just the Boltzmann factor for
the density distribution: ρ ∝ exp(−βφ) where φ is the potential energy at
a given location due to the distribution of particles. One could have almost
written this down “by inspection”!

The description so far is independent of the nature of the potential U
(except for one important caveat which we will discuss right at the end).
In the case of gravitational interaction, Eq. (25.10) becomes:

ρ(xxx) = Aexp(−βφ(xxx)); φ(xxx) =−G
∫ ρ(yyy)d3yyy

|xxx− yyy| . (25.11)

The integral equation (25.11) for ρ(xxx) can be easily converted to a differ-
ential equation for φ(xxx) by taking the Laplacian of the second equation —
leading to ∇2φ = 4πGρ — and using the first. We then get ∇2φ ∝ e−βφ .
If we now consider the spherically symmetric case, this reduces to:

∇2φ =
1
r2

d
dr

(
r2 dφ

dr

)
= 4πGρce−β [φ(r)−φ(0)] , (25.12)

called the isothermal sphere equation. (One can actually prove that among
all solutions to Eq. (25.11), the spherically symmetric one extremises the
S in Eq. (25.8).) The constants β and ρc (the central density) have to be
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Get rid of
inessentials

One solution, but
not what we want

A useful trick
to know

fixed in terms of the total number (or mass) of the particles and the total
energy. Given the solution to this equation, which represents an extremum
of the entropy, all other quantities can be determined. As we shall see, this
system shows several peculiarities.

To analyse Eq. (25.12), it is convenient to introduce length, mass and
energy scales by the definitions

L0 ≡ (4πGρcβ )1/2 , M0 = 4πρcL3
0, φ0 ≡ β−1 =

GM0

L0
. (25.13)

All other physical variables can be expressed in terms of the dimension-
less quantities x ≡ (r/L0), n ≡ (ρ/ρc), m = (M (r)/M0), y ≡ β [φ −
φ(0))] where M(r) is the mass inside a sphere of radius r. These vari-
ables satisfy the easily derived equations:

y′ = m/x2; m′ = nx2; n′ =−mn/x2 , (25.14)

where the prime denotes the derivative with respect to x. In terms of y(x),
the isothermal equation, Eq. (25.12), becomes

1
x2

d
dx

(x2 dy
dx

) = e−y , (25.15)

with the boundary condition y(0) = y′(0) = 0.

Let us consider the nature of solutions to this equation. By direct sub-
stitution, we see that n =

(
2/x2

)
,m = 2x,y = 2lnx satisfy Eq. (25.14) and

Eq. (25.15). This simple solution, however, is singular at the origin and
hence is not physically admissible. The importance of this solution lies in
the fact that – as we will see – all other (physically admissible) solutions
tend to this solution [111, 112] for large values of x. This asymptotic be-
havior of all solutions shows that the density decreases as (1/r2) for large
r implying that the mass contained inside a sphere of radius r increases
as M(r) ∝ r at large r. Of course, in our case, the system is enclosed in a
spherical box of radius R with a given mass M.

To find non-singular solutions that satisfy the boundary conditions
y(0) = y′(0) = 0, we first note that Eq. (25.15) is invariant under the trans-
formation y → y+ a ; x → kx with k2 = ea. This invariance implies that,
given a solution with some value of y(0), we can obtain the solution with
any other value of y(0) by simple rescaling. Therefore, only one of the
two integration constants needed in the solution to Eq. (25.15) is really
non-trivial. Hence it must be possible to reduce the degree of the equa-
tion from two to one by a judicious choice of variables. One such set of
variables is:

v ≡ m
x

; u ≡ nx3

m
=

nx2

v
. (25.16)
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The solution

The important
parameter:
RE/GM2

A cute result

In terms of v and u, Eq. (25.12) becomes

u
v

dv
du

=− (u−1)
(u+ v−3)

. (25.17)

The boundary conditions y(0) = y′(0) = 0 translate into the following:
v is zero at u = 3, and (dv/du) = −5/3 at (3,0). (You can prove this
by examining the behaviour of Eq. (25.14) near x = 0 retaining up to
necessary order in x.)

The solution v(u) to Eq. (25.17) can be easily obtained numerically: it
is plotted in Fig. 25.1 as the spiraling curve. The singular points of this
differential equation are given by the location in the uv plane at which
both the numerator and denominator of the right hand side of Eq. (25.17)
vanish together. Solving u = 1 and u+ v = 3 simultaneously, we get the
singular point to be us = 1, vs = 2. Using Eq. (25.16), we find that this
point corresponds to the asymptotic solution n = (2/x2),m = 2x. It is ob-
vious from the nature of Eq. (25.17) that the solution curve will spiral
around the singular point asymptotically approaching the n = 2/x2 solu-
tion at large x.

The nature of the solution (shown in Fig. 25.1) allows us to put inter-
esting bounds on various physical quantities including energy. To see this,
we compute the total energy E of the isothermal sphere. The potential and
kinetic energies are

U = −
∫ R

0

GM(r)
r

dM
dr

dr =−GM2
0

L0

∫ x0

0
mnxdx

K =
3
2

M
β

=
3
2

GM2
0

L0
m(x0) =

GM2
0

L0

3
2

∫ x0

0
nx2dx , (25.18)

where x0 = R/L0 is the boundary and the expression for K follows from
the velocity dependence of f in Eq. (25.9). The total energy is, therefore,

E = K +U =
GM2

0
2L0

∫ x0

0
dx(3nx2 −2mnx)

=
GM2

0
2L0

∫ x0

0
dx

d
dx

{2nx3 −3m}= GM2
0

L0
{n0x3

0 −
3
2

m0} , (25.19)

where n0 = n(x0) and m0 =m(x0). The dimensionless quantity (RE/GM2)
is given by

λ ≡ RE
GM2 =

1
v0
{u0 − 3

2
}. (25.20)

Note that the combination (RE/GM2) is a function of only the values of
(u,v) at the boundary.

Let us now consider the constraints on λ . Suppose we specify some
value for λ by specifying R,E and M. Then such an isothermal sphere
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Fig. 25.1: Bound on RE/GM2 for the isothermal sphere. See text for discussion.

A bound on
RE/GM2

must lie on the curve

v =
1
λ

(
u− 3

2

)
; λ ≡ RE

GM2 , (25.21)

which is a straight line through the point (1.5,0) with the slope λ−1. On
the other hand, since all isothermal spheres must lie on the u− v curve,
an isothermal sphere can exist only if the line in Eq. (25.21) intersects the
u− v curve.

For large positive λ (positive E), there is only one intersection. When
λ = 0, (zero energy) we still have a unique isothermal sphere. (For λ = 0,
Eq. (25.21) represents a vertical line through u = 3/2.). When λ is nega-
tive (negative E), the line can cut the u− v curve at more than one point;
thus more than one isothermal sphere can exist with a given value of λ .
(Of course, the degeneracy is lifted by specifying M,R,E individually.)
But as we decrease λ (more and more negative E), the line in Eq. (25.21)
will slope more and more to the left; and when λ is smaller than a critical
value λc, the intersection will cease to exist. So we reach the key conclu-
sion that no isothermal sphere can exist if (RE/GM2) is below a critical
value λc. This fact follows immediately from the nature of u−v curve and
Eq. (25.21). The value of λc can be found from the numerical solution and
turns out to be about (−0.335).

This result was originally due to Antonov [114] while this specific
derivation was provided by me [111, 113]. It is surprising that Chan-
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The destabilizing
influence of gravity

No global maxima
for entropy; no real
equilibrium

Sometimes, not even
a local maxima

Real life

drasekhar, who worked out the isothermal sphere in u− v coordinates as
early as 1939, missed discovering the energy bound shown in Fig. 25.1.
Chandrasekhar [112] has the u−v curve but did not over-plot lines of con-
stant λ . If he had done that, he would have discovered Antonov instability
decades before Antonov did [114].

To understand the implications of this result, let us consider construct-
ing such a system with a given mass M, radius R and an energy E =−|E|
which is negative. (The last condition means that the system is gravita-
tionally bound.) In this case, λ = RE/GM2 = −R|E|/GM2 is a negative
number but let us assume that it is above the critical value; that is, λ > λc.
In this case we know that an isothermal sphere solution exists for the given
parameter values. By construction, this solution is the local extremum of
the entropy and could represent an equilibrium configuration if it is also a
global maximum of entropy.

However, for the system we are considering, it is actually quite easy
to see that there is no global maximum for entropy. This is because, for a
system of point particles interacting via the Newtonian potential, there is
no lower bound to the gravitational potential energy. If we build a com-
pact core of mass m < M and radius r inside the spherical cavity, then,
by decreasing r, one can supply an arbitrarily large amount of energy
to the rest of the particles. Very soon, the remaining particles will have
very large kinetic energy compared to their gravitational potential energy
and will essentially bounce around inside the spherical cavity like a non-
interacting gas of particles. The compact core in the center will continue
to shrink thereby supplying energy to the rest of the particles. It is easy
to see that such a core-halo configuration can have arbitrarily high values
for the entropy. All this goes to show that the isothermal sphere cannot
be a global maximum for the entropy. (This was the caveat in the calcula-
tion we performed to derive the isothermal sphere equation in Eq. (25.10)
without a short distance cut-off; we tacitly assumed that the extremum
condition can be satisfied for a finite value of entropy.)

If the radius of the spherical cavity is increased (with some fixed value
for E =−|E|), the parameter λ will become more and more negative and
for sufficiently large R, we will have a situation with λ < λc. Now the
situation gets worse. The system does not even have a local extremum
for the entropy and will evolve directly towards a core-halo configuration.
This is closely related to the Antonov instability [113, 114].

In practice, of course, there is always a short distance cut-off because
of which the core cannot shrink to an arbitrarily small radius. In such
a case, there is a global maximum for entropy achieved by the (finite)
core-halo configuration which could be thought of as the final state in the
evolution of such a system. It will be highly inhomogeneous and, in fact,
is very similar to a system which exists as a mixture of two phases. This
is one key peculiarity introduced by long range attractive interactions in
statistical mechanics.
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26Gravity bends electric field lines

The electric field lines of a point charge go out radially from it (see figure
26.1). If the charged particle is replaced by a point source of light, the
photons emitted by the source also propagate in the same way. In other
words, the electric field lines track the photon path when the light source
is replaced by a charge.

Let us next consider a source of light kept in a gravitational field, say,
near the surface of Earth. We know that light rays are bent by the action of
gravity and they will no longer be propagating radially outwards. But what
happens to the electric field lines of a point charge held at rest in Earth’s
gravitational field? Of course, we have no right to expect the simple anal-
ogy between the light source and the point charge to hold in the presence
of gravity. So it comes as a delightful surprise that it indeed holds.

The electric field lines from a point charge — and the rays of light when
the charge is replaced by a source of light — follow the same trajectory
even in a constant gravitational field! They both get distorted in the same
way as shown in Fig. 26.1. (In fact both trajectories turn out to be arcs
of circles!) This chapter is devoted to explaining this — and related —
beautiful results.

Obtaining the electric field lines in the presence of Earth’s gravity is a
bit of a complicated task because we need to solve the Maxwell equations
in a curved spacetime after first determining the form of the metric in a
constant gravitational field. Given the complications, we will attack the
problem in a step-by-step manner. We will first obtain the form of the
relevant metric and then get the path of light rays in that metric. This will
tell us how gravity bends the light rays. We will then find the electrostatic
potential due to the point charge in this gravitational field (which turns out
to be a rather cute result by itself). Finally, we will get the electric field
lines and show that they match with the path of light rays obtained earlier.

A constant gravitational field, of course, is equivalent to a uniform
acceleration. So the natural coordinate system for discussing a constant
gravitational field ggg is the Rindler coordinate system which can be inter-
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Fig. 26.1:Top: The field lines of a point charge in empty space extend radially outward
from the charge. If we replace the charge by a point source of light, the light rays will
also follow the same trajectory as the electric field lines. Bottom: Gravity bends the path
of light rays. If a source of light is kept at the point X , the path of light rays will be as
shown in the presence of a constant downward gravitational field. Incredibly enough,
if the source of light is replaced by a point charge, its electric field lines will also be
bent by the gravitational field in exactly the same manner! In other words, both the top
and bottom figures can be interpreted either in terms of light rays or in terms of electric
field lines.

preted in term of the coordinate system adopted by a uniformly acceler-
ated observer in flat spacetime. The metric in the Rindler frame can be
expressed in the form (see Appendix of Chapter 15):

ds2 = −(1+ggg · rrr)2dt2 +drrr2 ≡−N2(rrr)dt2 +drrr2

= −(1+gx)2dt2 +dx2 +dy2 +dz2 . (26.1)
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Another coordinate
system

The second equality defines N ≡√|g00| and the form of the metric in the
third part is obtained by rotating the spatial coordinates so that the acceler-
ation ggg is along the x−axis. Spatial sections are flat and hence the concept
of 3-vector operations in the t = constant surfaces are well-defined by the
usual rules of Cartesian vectors.

The transformation equations from the inertial co-ordinates (denoted
by capital letters) (T,RRR)= (T,X ,Y,Z), to the Rindler co-ordinates (t,x,y,z)
are given by Y = y, Z = z and

gT = (1+gx)sinh(gt); 1+gX = (1+gx)cosh(gt) (26.2)

(see Appendix of Chapter 15; Eq. (15.43)). This transformation covers the
quadrant |gT |< (1+gX),(1+gX)> 0 of the inertial frame which will be
adequate for our purpose. The transformation in Eq. (26.2) reduces to an
identity (i) when g= 0, or (ii) at the hypersurface t = T = 0 even with non-
zero g. On this hypersurface, (∂Xa/∂xb) = dia(N,1,1,1). These facts are
useful while transforming the tensors from one frame to another.

We will be often interested in the case of a weak acceleration and work
with expressions which are accurate to first order in g. In this limit, the
transformations in Eq. (26.2) reduce to

T ≈ t(1+ggg · rrr); RRR ≈ rrr+(1/2)gggt2 . (26.3)

The second relation is obvious; from Newtonian physics, the first one can
be interpreted as the effect of gravity on the rate of clocks due to the
gravitational redshift factor (see Chapter 11). These are correct to linear
order in g. From Eq. (26.3), we also have the inverse transformations,
again to the lowest order in g:

t ≈ T (1−ggg ·RRR); rrr ≈ RRR− (1/2)gggT 2 . (26.4)

Note that to linear order in g, we have ggg ·RRR 	 ggg · rrr. In the Rindler frame,
our expressions are correct to O(ggg · rrr/c2) while in the inertial frame, they
are correct to order O(ggg · rrr/c2) and O(v/c), where v is the speed of a
particle moving with acceleration g.

When we are not interested in the g → 0 limit, it is more convenient to
work with a shifted x−coordinate x̄ = x+g−1 in which the Rindler metric
takes the form

ds2 =−(gx̄)2dt2 +dx̄2 +dy2 +dz2 , (26.5)

with the coordinate transformations in Eq. (26.2) becoming:

T = x̄sinh(gt); X = x̄cosh(gt) . (26.6)
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Line intervals

Step 2: Path of light
rays in weak gravity

Curves of constant x̄ correspond to particles traveling on uniformly accel-
erated trajectories.

In this form, the transformations reduce to those corresponding to
the polar coordinates if we analytically continue the time coordinates to
purely imaginary values: t → itE ;T → iTE . The proper interval between
any two events in the Rindler frame can be written down just by inspection
if we note that — when we use the coordinate x̄ = x+ g−1 and analyti-
cally continue to Euclidean space — the Euclidean distance in the plane
between (tE

1 ,x1) and (tE
2 ,x2) is given by the standard cosine formula

s2
E(2,1) = x2

2 + x2
1 −2x2x1 cosg(tE

2 − tE
1 ) . (26.7)

Analytically continuing back and adding the transverse contribution
ρ2 ≡ (y2 − y1)

2 +(z2 − z1)
2, we get

s2(2,1) = ρ2 + x̄2
2 + x̄2

1 −2x̄2x̄1 coshg(t2 − t1) , (26.8)

which will be useful in our discussion later on.

After all this background, let us determine the paths of light rays pass-
ing through any event P in the Rindler frame. It can be easily verified
that the paths of light rays in this xy plane are parts of circles. (Experts
will note that the Rindler metric in Eq. (26.5) is conformal to a metric
for which the spatial section is a Poincaré half-plane. Since the Poincaré
half-plane is known to have circles as geodesics, this result is obvious. If
you are not an expert, you can easily work it out!) To prove this, we begin
with the generally covariant form of the Hamilton-Jacobi equation for a
photon (see Eq. (2.16)), obtained by substituting pi = ∂iS into pi pi = 0,
getting:

gik ∂S
∂xi

∂S
∂xk = 0 , (26.9)

where S is the action and the metric is given by Eq. (26.5). If the tangent
vector to the light ray emanating from an event P is ka = (ω,kkk), then we
can always choose the transverse coordinates (y,z) such that kkk lies in the
xy plane. Since we are interested in the null geodesics in the xy plane in a
static metric, we can separate the variables as:

S =−E t + yky +S1(x̄) , (26.10)

where E is the energy, and ky is the y−component of the momentum
and S1(x̄) stands for the term in the action that depends only on x̄. Us-
ing Eq. (26.10) in Eq. (26.9) with Eq. (26.5) we get:

S =
∫
(E 2 − k2

y g2x̄2)1/2 dx̄
gx̄

+ kyy−E t . (26.11)
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Light rays are arcs
of circles!

To determine the trajectory in the xy plane, we differentiate S with respect
to ky, and equate to a constant y0, getting

y− y0 = ky

∫
dx̄

gx̄
(E 2 − k2

y g2x̄2)1/2 . (26.12)

With the substitution kygx̄ = E cosθ , the above integral can be easily eval-
uated to find y− y0 = (E /kyg)sinθ so that the equation to the light ray
is:

x̄2 +(y− y0)
2 = R2 , (26.13)

where R = E /kyg. This is the equation to a circle (see Fig. 26.1) with
center at (x̄,y) = (0,y0) and having radius R = E /kyg.

We also need the notion of a suitable “distance” or “time” along the
light ray. This is given by a concept called the affine parameter λ which
is used to parametrize light paths as xa(λ ) just as we use propertime τ to
parametrize trajectories of particles as xa(τ). The formal definition of the
affine parameter uses the machinery of general relativity which we do not
want to get into. But since the metric is independent of y, we can define
the affine parameter by d2y/dλ 2 = 0. So, with suitable initial conditions,
one can simply take the y−coordinate itself as proportional to the affine
parameter λ . To relate this affine parameter with the time coordinate t, we
need to determine y in terms of t. Along the null trajectory, we have:

g2x̄2dt2 = dx̄2 +dy2 , (26.14)

from which we obtain

g2x̄2
(

dt
dy

)2

= 1+
(

dx̄
dy

)2

. (26.15)

However, from Eq. (26.13) giving the trajectory, we know that:

(
dx̄
dy

)2

=

(
y− y0

x̄

)2

. (26.16)

Hence, Eq. (26.15) becomes:

g2x̄2
(

dt
dy

)2

= 1+
(

y− y0

x̄

)2

=

(
R
x̄

)2

, (26.17)

giving

t =
R
g

∫ dy
x̄2 . (26.18)
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Step 3: Electrostatic
potential in weak
gravity

It is just Coulomb
potential with affine
parameter for
distance!

The proof

With the substitutions y = y0 +Rsinθ and x̄ = Rcosθ , the above integral
can be evaluated to give:

t =
1
g

log
(

1+ tan (θ/2)
1− tan (θ/2)

)
=

1
g

log tan
(
θ
2
+
π
4

)
. (26.19)

Substituting back in terms of the original variables, we find:

2 tan−1(egt)− π
2
= sin−1

(
y− y0

R

)
. (26.20)

Rearranging and simplifying, we have:

tanhgt =
(

y− y0

R

)
=

α
R
λ . (26.21)

Therefore, the affine parameter turns out to be proportional to tanhgt,
where α is a proportionality constant giving y = y0 +αλ . We fix it by
noting that when g → 0, we would like the affine parameter to become t.
This gives λ = g−1 tanh(gt).

We are now in a position to determine the electrostatic potential and
the electric field of a charged particle which is at rest at the origin of the
Rindler frame or — equivalently — in a weak homogeneous gravitational
field. Such a charged particle will be moving along a uniformly acceler-
ated trajectory in the inertial coordinate system.

We begin by noting that, because of the static nature of the Rindler
frame, the four-vector potential reduces to the form Ai = (A0,0,0,0) with
A0(rrr) being independent of the time coordinate. It is therefore enough
if we determine the electrostatic potential on the t = 0 hypersurface. We
also know that the potential at an event xi is determined by the nature of
the trajectory of the charged particle zi(tR) at the retarded time tR. This
retarded time is a function of the field coordinates xi and is determined by
the condition that zi(tR) and xi are connected by a light ray. We will argue
that the potential A0(0,rrr) due to a charge at rest in the Rindler frame
should be expressible in the form

A0(rrr) = A0(0,rrr) =
q

λ (F ;S )
, (26.22)

where λ (F ;S ) is the affine parameter distance along a null geodesic
connecting the field event F (0,rrr) with the location of the source at the
retarded time S (tR,000). So it is just like a Coulomb field with the affine
parameter distance replacing the radial distance.

This result is easily established along the following lines: We begin
with the usual formula for the potential of an arbitrarily moving charge in
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Why we can’t use
this in general

inertial coordinates, written in the form (see Appendix):

Ak =
2quk

|ds2/dτ| , (26.23)

where ui(τ) is the four-velocity of the charge in the inertial frame at
the proper time τ and the expression on the right hand side has to be
evaluated at the retarded time on the trajectory of the charge. Taking
the dot product of both sides with uk (at the retarded time) we get the
scalar equation Akuk = −2q/|ds2/dτ|. In the Lorentz frame in which
the charge was at rest at the origin, at the retarded time, the right hand
side reduces to usual Coulomb form q/|TR| where TR (< 0) is the rel-
evant retarded time satisfying the condition TR = −|RRR|. We next note
that −TR or |RRR| is actually the affine distance λ along the null geodesic
connecting the event S = (TR,000) corresponding to the source at re-
tarded time to the event F = (0,RRR) where the field is measured. This
shows that we can equivalently write Akuk =−q/λ in any Lorentz frame,
for an arbitrarily moving charged particle. But both sides of this equa-
tion are also generally covariant in flat spacetime when curvilinear co-
ordinates are used. (As an aside, let me make the following comment:
In the left hand side, Ak is the potential at some event xi while uk is
the four-velocity of the charge at the retarded event zi connected to xi

by a light ray. So the dot product of these two vectors, defined a pri-
ori in two different events, can be taken only after parallel transport-
ing one vector to the location of another. Since this parallel transport
is unique in flat spacetime, the expression is invariant with respect to
curvilinear coordinate transformations in flat spacetime. Unfortunately,
this prevents us from applying this idea to genuinely curved spacetime
without modification.) Therefore we can use the same relation in curvi-
linear coordinates as well, and express the electrostatic potential of a
static source at the origin of the Rindler frame in a generally covariant
manner, in terms of the affine parameter distance between the source
at the retarded time and the field point. In the Rindler frame, we have
Akuk = A0 since u0 = 1/N = 1 at the trajectory of the charge at all times,
including at the relevant retarded time, thereby leading to the result in
Eq. (26.22). Since the affine parameter is given by Eq. (26.21), we get the
result:

A0(rrr) =
q

g−1 tanhgtR
. (26.24)

Obviously, both λ and the retarded time tR depend on the spatial coor-
dinate of the field point rrr. So we need to next compute the retarded time
tR. Consider the field event F = (0,rrr) and the source event at the retarded
time S = (tR,000), connected by a null ray. Setting s2 = 0 in the expres-
sion for the interval given by Eq. (26.8) will allow us to determine tR. In
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Final result

Eq. (26.8), we are now interested in the case with x̄1 = g−1, y1 = z1 = 0,
t1 = tR, t2 = 0, r̄rr222 = r̄rr for which we get:

s2(F ;S ) = ρ2 + x̄2 +g−2 −2g−1x̄coshgtR . (26.25)

The condition s2 = 0 now determines tR in terms of other variables and
we get:

coshgtR =
g
2x̄

[ρ2 + x̄2 +g−2] . (26.26)

More explicitly, we have

coshgtR =
1+g2r̄2

2gx̄
; sinhgtR =

1
2gx̄

[
(1+g2r̄2)2 −4g2x̄2]1/2

,

(26.27)
where r2 = x2 + y2 + z2 ≡ ρ2 + x2. Taking the ratio to obtain tanhgtR and
switching back to x = x̄− g−1, leads to the expression for the potential
given by

A0 =
q
r

1+gx+g2r2/2
(1+gx+g2r2/4)1/2 . (26.28)

While this expression has been obtained by several people in the past
[115–121], the cute interpretation in terms of the affine parameter in
Eq. (26.22) is from Ref. [122]. This result can also be expressed [123]
as

A0 =
qg
2

(
�+
�−

+
�−
�+

)
; �2

± = ρ2 +(x̄±g−1)2 , (26.29)

where �± represent the distances to the field point from a charge (at 1/g)
and an ‘image charge’ (at −1/g). Equipotential surfaces correspond to
constant values of �+/�−. Since the locus of a point that moves keeping
the ratio of distances from two different points constant, is a circle, we
find that equipotential surfaces are circles in the xy plane.

To get the electric field from the vector potential, we note that when
the charge distribution is static we can assume that only A0 and Fμ0 =
−F0μ = ∂μA0 are non-zero, leading to

EEE =−N−1∇A0. (26.30)

So, in the Rindler frame with the electric field given by:

EEE =− ∇A0

(1+ggg · rrr) . (26.31)

Without loss of generality, we can confine our attention to the xy plane
with EEE = (Ex,Ey,0). Explicit calculation using Eq. (26.28) gives:

Ex =
qx
r3

1+gx/2−gy2/2x
(1+gx+g2r2/4)3/2 ; Ey =

qy
r3

1+gx
(1+gx+g2r2/4)3/2 .

(26.32)
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Step 4: The electric
field lines in weak
gravity

Field lines behave
like light rays!

Since only A0 is non-zero in the Rindler frame, it follows trivially that the
magnetic field vanishes.

We can now obtain our final result, related to the bending of the electric
field lines by gravity, directly from this expression. We know that the elec-
tric field lines in the xy plane are given by curves x = x(y) which satisfy
the equation dx/dy = Ex/Ey. On using Eq. (26.32), this reduces to

dx
dy

=
(x+g−1)2 −g−2 − y2

2y(x+g−1)
. (26.33)

It is easy to verify that this equation is solved by the circles in Eq. (26.13)
by noting that, for these circles, Eq. (26.33) gives dx/dy=−(y−yc)/(x+
g−1) which is the same relation we get from Eq. (26.13). In other words,
the electric field lines of a static charge in the Rindler frame coincide with
the paths of light rays! It is understandable that the electric field lines bend
under the action of gravity but it is rather surprising that they do so exactly
like the light rays (Fig. 26.1).

Having obtained the exact results, we shall next consider the case of a
weak gravitational field and work out the expressions to the linear order
in g. (A Rindler frame with acceleration ggg corresponds to a weak gravita-
tional field −ggg in the direction opposite to the acceleration; but for sim-
plicity, we shall continue to quote the results in terms of ggg.) In this case,
we get the solution:

A0 =
q
r

(
1+

ggg · rrr
2

)
. (26.34)

This is the electrostatic potential, in the limit of a weak gravitational field,
of a charge at rest at the origin of co-ordinates in the Rindler frame. We
can use Eq. (26.31) to obtain the corresponding electric field from this
potential. We get:

EEE =
qr̂rr
r2 − q

2r
(ggg+(ggg · r̂rr)r̂rr) = qr̂rr

r2

(
1− (ggg · rrr)

2

)
+

q
2r

(−−−ggg) , (26.35)

where r̂rr denotes the unit vector in the radial direction. In the first expres-
sion for EEE in Eq. (26.35), we have given the result in terms of a Coulomb
term plus a correction due to the gravitational field. In the second expres-
sion, we have separated the two terms based on the direction of the vec-
tors: the first one is in the radial direction with a corrected Coulomb term
while the second one is in the direction of the gravitational field (−ggg).

These results are for a charge located at the origin of the Rindler
frame. For our next application, we will require the potential and field
produced by a charge at rest, not at the origin, but at an arbitrary point
rrr0 = (x0,y0,0). (As noted before, there is no loss of generality in con-
fining to the xy plane.) It is not obvious that we can simply introduce a
translation of coordinates because our background metric is not transla-
tionally invariant. What is surprising, however, is that the electric field
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The weight of
electrostatic energy

does turn out to be translationally invariant to linear order in g. (For a
rigorous proof, see [122].) We find:

EEE =
q���
�3 − q

2�
(ggg+(ggg · �̂��)�̂��); ���= rrr−−− rrr000, (26.36)

so that this electric field depends only on the vectorial separation between
the charge and the field point.

The results obtained above lead to an interesting consequence when we
consider the forces exerted by two charges — located in a weak gravita-
tional field — on each other. To provide a concrete realization of this sit-
uation, consider the following thought experiment. Two charged particles
of masses m1 and m2 and charges q1 and q2 are held supported in a weak
gravitational field by, for example, hanging the two particles by strings
attached to the ceiling of a room in Earth’s gravitational field, so that the
charges are located on the same horizontal plane (Fig. 26.2). If the par-
ticles were uncharged, the sum of the tensions on the two strings will be

FLOOR

CEILING

q1 q2g

Fig. 26.2: Two charged particles are held supported in a weak gravitational field by
hanging them by strings attached to the ceiling of a room in Earth’s gravitational field.
If we ignore the effect of gravity on the electrostatic field produced by the charges,
the force exerted by the charges on one another is the usual Coulomb force, directed
horizontally along the line joining the charges. They cancel each other and there is no
net electrostatic force acting on the charges.
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equal to the total weight of the particles, (m1 +m2)g. When the particles
are charged, they exert electrostatic forces on one another. If we ignore the
effect of gravity on the electrostatic field produced by the charges, then the
force exerted by the charges on one another is the usual Coulomb force
which is directed horizontally along the line joining the charges. These
Coulomb forces cancel each other and there is no net electrostatic force
acting on the charges.

The situation changes in a curious manner when we take into account
the distortion of the field lines due to the weak gravitational field (Fig.
26.2). From Eq. (26.36) we find that there is a component of the electric
field in the direction of −ggg produced by each charge at the location of
the other. When we add up the forces exerted by the two charges on each
other, the forces in the direction of ��� cancel out leading to the net extra
force given by

FFF12 +FFF21 =−q1q2

�
ggg =

q1q2

�
ggge . (26.37)

FLOOR

CEILING

F21
vF12

v

q1 q2

F12
h F21

h

g

F12 + F21 =
q1q2

2
g

= mEM g

Fig. 26.3: The same situation as shown in the previous figure. Now we take into account
the distortion of the field lines due to the weak gravitational field, which produces a
component of the electric field in the downward direction of at the location of each
charge. While the horizontal forces cancel, these vertical components add up. The two
strings supporting the charges now have to support an additional weight (q1q2/�c2)g
which is the weight of the electrostatic potential energy in this frame. In a freely falling
frame these charges are moving with an acceleration g and this force will be interpreted
as due to the radiation field.
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A non-trivial
application:
radiation reaction
on the charge

The self-force

In the last expression we have used the fact that the direction of accelera-
tion in the Rindler frame ggg and the direction of Earth’s gravitational field
ggge are opposite to one another. This result shows that the two strings sup-
porting the charges located in a weak gravitational field have to support
an additional weight (q1q2/�c2)g which can be interpreted as the weight
of the electrostatic potential energy. In fact, we can turn this argument
around to claim that the distortion of the electric field due to gravity must
produce a term of the form (q/�)ggg since gravity has to support the elec-
trostatic energy. Obviously, the result extends to any number of charged
particles all located in the same horizontal plane; the extra weight that
needs to be supported by the string will be equal to the effective weight
of the total electrostatic energy of the system. (It appears that this prob-
lem was first tackled by Enrico Fermi in ref. [124]. Subsequently, there
have been several papers exploring this issue the results of which did not
always agree with each other; see e.g., Refs. [125,126]. These papers also
contain more extensive bibliography.)

Finally, we shall consider an intriguing application of the above anal-
ysis: that of determining the radiation reaction force on an accelerated
charged particle. We know that a charge with variable acceleration will
feel a radiation reaction force in the inertial frame proportional to ġ in the
non-relativistic limit. In Chapter 20 we argued (based on [127]) that the
electromagnetic fields of this charge — with variable acceleration — can
actually be determined from knowing only the fields of a uniformly accel-
erated charge. The question arises as to whether we can also interpret the
radiation reaction in the Rindler frame. We will now derive this result in
the non-relativistic limit.

We know that a charged particle which has a uniform acceleration ggg in
the inertial frame can be mapped to a charged particle at rest at the origin
of the Rindler frame. The electric field produced by this charge in the
Rindler frame is given by Eq. (26.35) which is accurate to lowest order in
g. Since the Rindler frame is a static frame of reference, we can, without
loss of generality, choose to measure this field at the time t = 0.

Let us now suppose that the charged particle is at the origin of the
inertial frame (which coincides with the origin of the Rindler frame) at
t = T = 0, but its acceleration g is slowly varying in time with a small but
non-zero time derivative, ġ. In other words, the instantaneous acceleration
of the charged particle at any time t (near t = 0) can be expressed as
g(t)≈ g0 + ġt where g0 is a constant and ġ is small and higher derivatives
(g̈,

.........
g etc.) are ignored. The trajectory of this charged particle can now

be expressed in the Rindler frame. The charge is no longer stationary at
the origin, but has a trajectory given by x0(t) = ġt3/6. So, the position of
the particle in the Rindler frame now changes with time due to the time
derivative of the acceleration ġ.

It is precisely this case that we are interested in for the radiation reac-
tion calculation. We will now derive the expression for the electric field of



26 Gravity bends electric field lines 291

Dirac’s result,
derived simply!

a charged particle which moves with slowly varying g as described above,
retaining only terms to lowest order in g throughout the analysis: First,
we will obtain the expression for the electric field, along the x−axis, of
a charge that is at rest at the origin of the Rindler frame. Then, we will
modify this expression for the case of a charge that is not exactly at rest,
but has a small but non-zero ġ. To the lowest order of approximation, this
can be accomplished by replacing g everywhere in the electric field ex-
pression, by g(t) = g0 + ġt, and at the same time replacing x by x− ġt3/6.
This latter replacement is necessary because our electric field expression
gives the field at point x, produced by a charge located at the origin. Since
the charge now has the trajectory x0(t) = ġt3/6, the translational invari-
ance of the field requires the replacement of x wherever it appears in the
electric field expression, by x− x0 = x− ġt3/6.

We will now carry out the above procedure. Consider the electric field
in the Rindler frame of a charged particle which is at rest at the origin
of this frame along the x−axis of the Rindler frame. This electric field is
given by setting r = x in the general expression in Eq. (26.35) leading to:

Ex =
q
x2 − qg

x
; Ey = 0 . (26.38)

Replacing g by g0+ ġt and x by x− ġt3/6, we get the field due to a charge
with a slowly varying acceleration:

Ex =
q

(x− ġt3/6)2 − q(g0 + ġt)
(x− ġt3/6)

. (26.39)

This expression is, in general, time-dependent and has to be evaluated at
the retarded time corresponding to the field point x. Again, to the lowest
order of approximation, the exact nature of the curved path of the light ray
does not matter and it can be approximated by a straight line connecting
the point (t,x) with approximately the origin (since ġ is small). Hence,
we have x2 = t2, since the path of light is a null line connecting the above
two points. However, since we are measuring the fields at the point x > 0,
say, at the time t = 0, the retarded time is negative with t =−x. Effecting
this substitution in Eq. (26.39) and retaining terms to lowest order in g,
we obtain (what will turn out to be) a miraculous result:

Ex =
q
x2 − qg0

x
+

2
3

qġ . (26.40)

This expression, in the limit of x → 0 is identical to the expression for the
self-force on a charge obtained by Dirac [128,129] with exactly the same
coefficients, relative signs and the nature of divergent terms!

The first two terms are well-known divergences when x → 0, (and are
discussed extensively in the literature). Briefly, the first term is discarded
as the electrostatic self energy and the second term, when moved to the



292 26 Gravity bends electric field lines

left hand side of the equations of motion, leads to a mass renormalization
because it is proportional to the acceleration. It is interesting that, even
with all our approximations — working things out to only the lowest order
in g, and neglecting all higher powers of g throughout the analysis —
we obtain these two terms with their appropriate signs and the correct
numerical coefficients in front.

The real strength of our simple technique, however, is brought out by
the production of the last term which is identical to the standard expres-
sion for the radiation reaction field of a charged particle. (The radiation
reaction force will be q times this field, (2/3)q2ġ.) Again, the factor and
sign in this term are identical to those in the standard expression. This
computation of the radiation reaction illustrates the power of our simple
non-relativistic approximation to the electric field.

Appendix: The Eq. (26.23) can be obtained as follows. We start with
two standard results: (i) In the Lorentz gauge, the vector potential — re-
lated to the current by �Am =−4π jm, has the solution:

Am(x) = 4π
∫

d4x Gret(x− y) jm(y) , (26.41)

where Gret is the retarded Green’s function given by:

Gret [x] =
1

2π
δ (s2) θ(x0); s2 ≡ xmxm . (26.42)

The δ (s2) factor is obvious from the propagation along the lightcone since
this is the only functional form which will lead to the correct 1/r depen-
dence in the static case; the θ(x0) ensures that the retarded condition is
satisfied. The proportionality constant can be determined by considering
the Poisson equation in the static limit. (ii) The current jm(x) for a point
charge moving along a worldline zm(τ) with a 4-velocity um(τ) is given
by:

jm(x) = e
∫

dτδ [x− z(τ)]um(τ) . (26.43)

This makes the current density zero everywhere except on the worldline
and, on the worldline it reduces to the standard expression, if we convert
the τ integration to a t integration. Equations (26.43) and (26.42) together
give the vector potential to be:

Am(x) = 4πe
∫

dτGret [x− z(τ)]um(τ)

= 2e
∫

dτδ (s2)um(τ) =
2eum

ds2/dτ
, (26.44)

evaluated at the retarded time. This is the expression used in the main text.
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